DOI QR코드

DOI QR Code

Analysis of Containment Building Subjected to a Large Aircraft Impact using a Hydrocode

Hydrocode를 이용한 격납구조의 대형 민항기 충돌해석

  • 신상섭 (한양대학교 건설환경공학과) ;
  • 박대효 (한양대학교 건설환경공학과)
  • Received : 2011.06.17
  • Accepted : 2011.08.09
  • Published : 2011.10.31

Abstract

In this paper, the response analysis of RC(Reinforced Concrete), SC(Steel-Plate Concrete) containment buildings subjected to a large aircraft impact is performed using Autodyn-3D as Hydrocode. Until now, the impact load in the analysis of aircraft impacts has been applied to target structures at the local area by using the impact load-time history function of Riera. However in this paper, the results of aircraft crash are analyzed by using an aircraft model similar to Boeing 767 and verified by comparing the generated history of the aircraft crash against the rigid target with another history by using the Riera's function. To estimate the resistivity of the impact, the response and safety of SC containment buildings, this study is performed by comparing the four cases of plane concrete, reinforced concrete, bonded containment liner plate at reinforced concrete, and SC structure. Thus, the different behaviors between SC and RC structures when they are subjected to the extreme impact load could be anticipated. Consequently, the improved safety is expected by replacing RC structure with SC structure for nuclear power plants.

본 논문은 RC(Reinforced Concrete), SC(Steel-Plate Concrete) 격납구조에 대한 대형 민항기 충돌에 관한 응답해석을 Hydrocode인 Autodyn-3D를 통해 수행하였다. 이전에 연구된 대부분의 항공기 충돌 해석에서의 충격 하중은 국부적인 부분(동체면적의 약 2배)에 대해 Riera의 충격하중함수를 적용하는 방법을 이용하여왔다. 하지만, 본 논문에서는 실제 Boeing 767과 유사한 모델을 구현하여 대상 구조체에 직접 충돌 시켜 나타나는 현상을 비교 분석 하였으며, 항공기 모델은 강성벽(Rigid Target)에 대해 항공기를 충돌 시켰을 시 발생되는 충돌하중이력곡선과, Riera 함수를 이용한 충돌하중이력곡선과의 비교를 통하여 검증하였다. 항공기 충돌 시, SC 격납구조에 대한 충돌저항능력 및 응답, 안전성 효과를 평가 하기 위해 무근 콘크리트(Plain Concrete:PC), 철근 콘크리트(Reinforced Concrete:RC), 철근 콘크리트와 완전 부착된 내부 Liner Plate(CLP:Containment Liner Plate), 그리고 SC 격납구조에 대한 해석을 수행하였다. 따라서 항공기 충돌과 같은 비정상충격하중이 RC구조와 SC구조에 가해질 경우에 대한 거동 예측이 가능하며, 보수적인 안전성이 요구되는 RC 원전 격납건물에 SC구조를 적용하면 상대적인 안전성 증대 효과를 기대 할 수 있을 것으로 보여진다.

Keywords

References

  1. 문일환, 김성민, 김원기, 문태엽(2008) 강판콘크리트(SC) 벽체의 구조용 리브 보강효과 검토. 학술발표대회 논문집, 한국강구조학회, pp. 276-279.
  2. 이승준, 최병정, 김태경(2009) 수직 보강된 SC 벽체의 거동에 대한 실험적 연구. 한국강구조학회 논문집, 한국강구조학회, 제21권, 제3호, pp. 277-287.
  3. 정철헌(2002) 항공기 충돌하중을 받는 CANDU형 원전 격납구조물의 비선형 동적해석. 대한토목학회논문집, 대한토목학회, 제22권, 제4A호, pp. 965-974.
  4. Abbas, H., Paul, D.K., Godbole, P.N., and Nayak, G.C. (1996) Aircraft crash upon outer containment of nuclear power plant, Nuclear Engineering and Design, Vol. 160, pp. 13-50. https://doi.org/10.1016/0029-5493(95)01049-1
  5. Arros, J. and Doumbalski, N. (2007) Analysis of aircraft impact to concrete structures, Nuclear Engineering and Design, Vol. 237, pp. 1241-1249. https://doi.org/10.1016/j.nucengdes.2006.09.044
  6. Boeing 767 Family., http://www.boeing.com/commercial/767family/index.html.
  7. Chelapati, C.V. and Kennedy, R.P. (1972) Probabilistic assessment of aircraft hazard for nuclear power plants, Nuclear Engineering and Design, Vol. 19, pp. 333-364. https://doi.org/10.1016/0029-5493(72)90136-7
  8. Century Dynamics (2004) AUTODYN User's Manual.
  9. Electric Power Research Institute (EPRI) (2002) Deterring Terrorism: Aircraft Crash Impact Analyses Demonstrate Nuclear Power Plant's Structural Strength.
  10. Hermann, W. (1969) Constitutive equation for the dynamic compaction of ductile porous materials, Journal of Applied Physics, Vol. 40, No 6, pp. 2490-2499. https://doi.org/10.1063/1.1658021
  11. Hansson, H. and Skoglund, P. (2002) Simulation of concrete penetration in 2D and 3D with the RHT material model, Technical Report, Swedish Defence Research Agency (FOI).
  12. Hiermaier S. (2009) Predictive modeling of dynamic processes: A Tribute to Professor Klaus Thoma. Springer, Heidelberg, Berlin.
  13. Johnson, G.R. and Cook, W.H. (1983) A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures, Proceedings 7th, International Symposium on Ballistics, Holland, pp. 541-547.
  14. Jovall, O. (2007) Airplane crash simulations: comparison of analyses results with test data, Transactions, 19th International Conference on Structural Mechanics in Reactor Technology (SMiRT 18), Toronto, Canada.
  15. Katayama, M., Itoh, M., and Rainsberger, R. (2004) Numerical simulation of jumbo jet impacting on thick concrete walls - effects of reinforcement and wall thickness, 2nd Asian Conference on High Pressure Research (ACHPR-2), Nara, Japan.
  16. Mizuno, J., Koshika, N., Sawamoto, Y., Niwa, N., Yamashita, T., and Suzuki, A. (2005) Investigation on impact resistance of steel plate reinforced concrete barriers against aircraft impact Part 1: Test program and results, Transactions, 18th International Conference on Structural Mechanics in Reactor Technology (SMiRT 18), Beijing, China.
  17. Nuclear Energy Institute (NEI 07-13) (2009) Methodology for Performing Aircraft Impact Assessments for New Plat Designs.
  18. Riera, J.D. (1968) On the stress analysis of structures subjected to aircraft forces, Nuclear Engineering and Design, Vol. 8, pp. 415-426. https://doi.org/10.1016/0029-5493(68)90039-3
  19. Rebora, B. and Zimmermann, Th. (1976) Dynamic rupture analysis of reinforced concrete shells, Nuclear Engineering and Design, Vol. 37, pp. 269-297. https://doi.org/10.1016/0029-5493(76)90021-2
  20. Riera, J.D. (1980) A critical reappraisal of nuclear power plant safety against accidental aircraft impact, Nuclear Engineering and Design, Vol. 57, pp. 193-206. https://doi.org/10.1016/0029-5493(80)90233-2
  21. Riedel, W., Thoma, K., Hiermaier, S., and Schmolinske, E. (1999) Penetration of reinforced concrete by BETA-B-500 numerical analysis using a new macroscopic concrete model for hydrocodes, Proceeding of 9th ISIEMS, Berlin, Germany.
  22. Sugano, T., Tsubota, H., Kasai, Y., Koshika, N., Orui, S., Von Riesemann, W.A., Bickel, D.C., and Parks, M.B. (1993) Fullscale aircraft impact test for evaluation of impact force, Nuclear Engineering and Design, Vol. 140, pp. 373-385. https://doi.org/10.1016/0029-5493(93)90119-T