DOI QR코드

DOI QR Code

Experimental Study on the Shear Behavior of Ultra High Performance Precast PSC Bridge Joint with Joint Type and Lateral Force

접합 조건 및 횡구속 조건에 따른 초고성능 프리캐스트 PSC 교량 접합부의 전단 거동에 관한 실험적 연구

  • 이창홍 (한국건설기술연구원 구조교량연구실) ;
  • 김영진 (한국건설기술연구원 구조교량연구실) ;
  • 진원종 (한국건설기술연구원 구조교량연구실) ;
  • 최은석 (한국건설기술연구원 구조교량연구실)
  • Received : 2011.04.05
  • Accepted : 2011.07.13
  • Published : 2011.10.31

Abstract

According to the development of ultra-high performance concrete (UHPC), its mechanical performance have been known as superior than normal and/or high performance concrete. However, its construction and structural safety must have studied with revisions and supplements. In this study, tests have been performed on UHPC precast segment joint with different levels of joint types and lateral forces under direct shear. From the results of the experimental tests, it can be concluded that the properties of the referred joints are significant for the resistance of shear behavior, and the increase of lateral force in these joints may suggest as critical lateral stress on that behavior.

초고성능콘크리트(UHPC)의 개발은 재료 역학적 특성면에서 기존의 일반 및 고성능 콘크리트에 비해 월등한 역학적 성능을 발휘하는 것으로 인식되고 있으나, 이에 관한 시공성 및 구조적 안전성에 대해서는 향후 많은 수정 및 보완 작업을 필요로 함이 예상되어진다. 이 연구에서는 UHPC를 적용한 프리캐스트 접합부의 전단 거동 특성의 분석을 위해 접합부 사이에 전단키를 설치한 경우의 접합 방식 및 횡구속 응력에 따른 전단 거동 특성 실험을 수행하였다. 실험 결과 에폭시 접합을 이용한 UHPC 접합의 경우가 현장 타설을 모사한 일체 타설의 경우보다 파괴 하중 및 전단 저항 응력면에서 우수함을 보였고, 횡구속 응력의 증가에 의해 전단 응력은 증가되지만, 횡구속 응력과 전단 응력 사이의 상호 효과에 따른 최적 임계 횡구속 응력이 존재하고 있음을 제시할 수 있었다.

Keywords

References

  1. 이창홍, 김영진, 진원종, 최은석(2011) 초고성능 프리캐스트 세그멘탈 PC 교량 접합부에 대한 실험 연구, 한국콘크리트학회논문집, 한국콘크리트학회, Vol. 23, No. 2, pp. 235-244.
  2. 한국콘크리트학회(2007) 콘크리트 구조설계기준 해설, 기문당, Vol. 1, No. 1, pp. 67-68.
  3. AASHTO (2003) Guide specifications for the design and construction of segmental concrete bridges, 2nd Edition with 2003 Interim Revisions. Vol. 1, No. 1, pp. 20.
  4. ACI 318-02 (2002) Building code requirements for structural concrete, American Concrete Institute, Farmington Hills, Michigan.
  5. Birkeland, P.W. and birkeland, H.W. (1966) Connections in pre-cast concrete construction, ACI Journal, Vol. 63, No. 3, pp. 345-367.
  6. Collepardi, M., Troli, R., Bressan, M., Liberatore, F., and Sforza, G. (2008) Crack-free concrete for outside industrial floors in the absence of wet curing and contraction joints, Cement and Concrete Composites, Vol. 30, No. 10, pp. 887-891. https://doi.org/10.1016/j.cemconcomp.2008.07.002
  7. Dias, J.L.M. (2007) Cracking due to shear in masonry mortar joints and around the interface between masonry walls and reinforced concrete beams, Construction and Building Materials, Vol. 21, No. 2, pp. 446-457. https://doi.org/10.1016/j.conbuildmat.2005.07.016
  8. FHWA (2006) Material property characterization of ultra high performance concrete, Federation Highway Administration Report, US Department of Transportation, VA. 22101-2296. Vol. 1, No. 1, pp. 1-231.
  9. Frigione, M. Aiello, M.A., and Naddeo, C. (2006) Water effects on the bond strength of concrete/concrete adhesive joints, Construction and Building Materials, Vol. 20, No. 10, pp. 957-970. https://doi.org/10.1016/j.conbuildmat.2005.06.015
  10. Hasan, H.K. and Tugrul, T. (2005) Performance of a precast concrete beam to beam connection subjected to reversed cyclic loading, Engineering Structures, Vol. 27, No. 9, pp. 1392-1407. https://doi.org/10.1016/j.engstruct.2005.04.004
  11. Hanson, N.W. (1960) Precast prestressed concrete bridges, Journal PCA Research and Development Laboratories, Vol. 2, No. 3, pp. 38-58.
  12. Hsu, T.T.C., Mau, S.T. and Chen, B. (1987) A theory on shear transfer strength of reinforced concrete, ACI Structural Journal, Vol. 84, No. 2, pp. 149-160.
  13. Hmosen, A.I. and Hiba, A.A. (2007) Structural behavior of single key joints in precast concrete segmental bridge, Journal of Bridge Engineering, Vol. 12, No. 3, pp. 315-324. https://doi.org/10.1061/(ASCE)1084-0702(2007)12:3(315)
  14. Kim, J.H. and LaFave, J.M. (2007) Key influence parameters for the joint shear behaviour of reinforced concrete beam-column connections, Engineering Structures, Vol. 29, No. 10, pp. 2523-2539. https://doi.org/10.1016/j.engstruct.2006.12.012
  15. Kim, T.H., Lee, H.M., Kim, Y.J., and Shin, H.M. (2010) Performance assessment of precast concrete segmental bridge columns with a shear resistant connecting structure, Engineering Structures, Vol. 32, No. 5, pp. 1292-1303. https://doi.org/10.1016/j.engstruct.2010.01.007
  16. Loov, R.E. (1978) Design of precast connections, Paper Presented at a Seminar Organized by Compa International Pte, Ltd.
  17. Loov, R.E. and Patnaik, A.K. (1994) Horizontal shear strength of composite concrete beams with a rough interface, PCI Journal, Vol. 39, No. 1, pp. 48-66. https://doi.org/10.15554/pcij.01011994.48.69
  18. Mast, R.F. (1968) Auxiliary reinforcement in concrete connections, ASCE Journal, Vol. 94, No. 6, pp. 1485-1504.
  19. Mattock, A.H. (1974) Shear transfer in concrete having reinforcement at an angle to the shear plane, shear in reinforced concrete, ACI SP-42, Vol. 1, No. 1, pp. 17-42.
  20. Menkulasi, F. (2002) Horizontal shear connectors for precast prestressed bridge deck panels, Masters of Science Thesis, The Virginia Polytechnic Institute and State University, Blacksburg, Virginia.
  21. Saemann, J.C. and Washa, G.W. (1964) Horizontal shear connections between precast beams and cast-in-place slabs, ACI Journal, Vol. 61, No. 11, pp. 1383-1408.
  22. Satoh, A., Yamada, K. and Ishiyama, S. (2010) A discussion on major factors affecting crack path of concrete to concrete interfacial surfaces, Engineering Fracture Mechanics, Vol. 77, No. 11, pp. 2168-2181. https://doi.org/10.1016/j.engfracmech.2010.03.005
  23. Shannag, M.J., Nabeela A.D., and Ghazi A.F. (2005) Lateral load response of high performance fiber reinforced concrete beamcolumn joints, Construction and Building Materials, Vol. 19, No. 7, pp. 500-508. https://doi.org/10.1016/j.conbuildmat.2005.01.007
  24. Sritharan, S. Nigel, M.J., and Seible, F. (2000) Nonlinear finite element analyses of concrete bridge joint systems subjected to seismic actions, Finite Element in Analysis and Design, Vol. 36, No. 4, pp. 215-233. https://doi.org/10.1016/S0168-874X(00)00034-2
  25. Stuart, A., Paul, F., Simon, A., and Peter, R. (2005) A Test Method and Deterioration Model for Joints and Cracks in Concrete Slabs, Cement and Concrete Research, Vol. 35, No. 12, pp. 2371-2383. https://doi.org/10.1016/j.cemconres.2005.08.002
  26. Thomas K., Florian, R., and Aixi Z. (2007) Multifunctional all- GFRP joint for concrete slab structures, Construction and Building Materials, Vol. 21, No. 6, pp. 1206-1217. https://doi.org/10.1016/j.conbuildmat.2006.06.003
  27. Turmo, J. Ramos, G., and Aparico, A.C. (2006) Shear strength of dry joints of concrete panels with and without steel fibres, Engineering Structures, Vol. 28, No. 1, pp. 23-33. https://doi.org/10.1016/j.engstruct.2005.07.001
  28. Turmo, J., Ramos, G., and Aparicio, A.C. (2005) FEM study on the structural behaviour of segmental concrete bridge with unbonded prestressing and dry joints: simply supported bridges, Engineering Structures, Vol. 27, No. 11, pp. 1652-1661. https://doi.org/10.1016/j.engstruct.2005.04.011
  29. JSCE UHPC Guide line (2010) Recommendations for design and construction of ultra high strength fiber reinforced concrete structures, JSCE Draft Version-Appendix 5, Vol. 1, No. 1, pp. 1-5.
  30. Walraven, J., frenay, J., and Pruijssers, A. (1987) Influence of concrete strength and load history on the shear friction capacity of concrete members, PCI Journal, Vol. 32, No. 1, pp. 66-84. https://doi.org/10.15554/pcij.01011987.66.84