Browse > Article
http://dx.doi.org/10.12652/Ksce.2011.31.2B.175

Numerical Analysis for Three-Dimensional Tsunami Force Acting on Multi-Onshore Structures  

Lee, Kwang Ho (나고야대학 대학원 공학연구과 사회기반공학전공)
Ha, Sun Wook (한국해양대학교 대학원 토목환경공학과)
Lee, Kui Seop (한국해양대학교 대학원 토목환경공학과)
Kim, Do Sam (한국해양대학교 공과대학 토목공학과)
Publication Information
KSCE Journal of Civil and Environmental Engineering Research / v.31, no.2B, 2011 , pp. 175-185 More about this Journal
Abstract
This study investigates tsunami force acting on a group of onshore structures numerically by using three-dimensional one-field model for immiscible multi-phase flows, which is based on Navier-Stokes solver. In particular, we studied on the characteristics of tsunami with respect to the arrangement of onshore structures and the distance from seawall trough numerical experiments. For validation of the numerical method used in this study to calculate tsunami force, numerical results for tsunami force on the structures in coastal area are compared with available experimental data. Furthermore, a detail study on the efficiency of the numerical method is performed for the estimation of tsunami force based on the hydrostatic and hydrodynamic methods in which the numerical results are used. The obtained results are compared to the previous experimental one and design criteria. Considering both experimental results and numerical analysis results, semi-empirical formula by regression analysis is proposed. As a result, it was confirmed that the numerical analysis is effective to estimate on tsunami force acting on onshore structures.
Keywords
onshore structure; tsunami force; solitary wave; 3d one-field model for immiscible two-phase flows;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 김도삼, 이광호, 허동수, 김정수(2001) VOF법에 기초한 불투과 잠제 주변파동장의 수치해석, 대한토목학회논문집, 대한토목학회, 제21권 제5B호, pp. 551-560.
2 이광호, 정성호, 정진우, 김도삼(2010) 공진장치를 이용한 단주기 파랑과 고립파의 제어, 대한토목학회논문집, 대한토목학회, 제30권 제1B호, pp. 89-100.
3 이광호, 김창훈, 김도삼, Harry Yeh, 황용태(2009a) 해안안벽과 육상구조물에서 지진해일파의 처오름 및 작용파력에 관한 수치해석, 대한토목학회논문집, 대한토목학회, 제29권 제3B호, pp. 289-301.
4 이광호, 김창훈, 김도삼, 황용태(2009b) 2차원수조내에서 단파의 변형과 구조물에 작용하는 단파파력에 관한 수치해석, 대한토목학회논문집, 대한토목학회, 제29권 제5B호, pp. 473-482.
5 이광호, 이상기, 신동훈, 김도삼(2008) 복수연직주상구조물에 작용하는 비선형파력과 구조물에 의한 비선형파랑변형의 3차원해석. 한국해안해양공학회논문집, 한국해안해양공학회, 제20권, 제1호, pp. 1-13.
6 Akiyama, M. and Aritomi, M. (2002) Advanced numerical analysis of two-phase flow dynamics -multi-dimensional flow analysis-, Corona Publishing Co., LTD. Tokyo, Japan.
7 Amsden, A.A. and Harlow, F.H. (1970) The SMAC method : a numerical technique for calculating incompressible fluid flow. Los Alamos Scientific Laboratory Report LA-4370, Los Alaomos, N.M.
8 Arikawa, T., Yamada, F., and Akiyama, M. (2005) Study of the applicability of tsunami wave force in a three-dimensional numerical wave flume. Ann. J. of Coastal Engrg., JSCE, Vol. 52, pp. 46-50.
9 Arikawa, T., Ikebe, M., Yamada, F., Shimosako, K., and Imamura, F. (2005) Large model test of tsunami force on a revement and on a land structure. Proc. of Coastal Engrg., JSCE, Vol. 52, pp. 746-750.   DOI
10 ASCE (2006) Minimum design loads for buildings and other structures. ASCE/SEI Standard 7-05, ASCE.
11 Asakura, R., Iwase, K., Ikeya, T., Takao, M., Kaneto, T., Fujii, N., and Omori, M. (2000) An experimental study on wave force acting on on-shore structures due to overflowing tsunamis. Proc. of Coastal Engrg., JSCE, Vol. 47, pp. 911-915.   DOI
12 Brorsen, M. and Larsen, J. (1987) Source generation of nonlinear gravity waves with boundary integral equation method, Coastal Engrg., Vol. 11, pp. 93-113.   DOI   ScienceOn
13 CCH(City and County of Honolulu Building Code) (2000) Department of Planning and Permitting of Honolulu Hawaii. Chapter 16, Article 11, Hawaii, USA.
14 Cross, R.H. (1967) Tsunami surge forces. J. of the Waterways and Harbours Division, ASCE, Vol. 93, No. WW4, pp. 201-231.
15 Cumberbatch, E. (1960) The impact of a water wedge on a wall. J. of Fluid Mech., Vol. 7, No. 3, pp. 353-373.   DOI
16 Dames and Moore (1980) Design and Construction Standards for Residential Construction in Tsunami-prone Areas in Hawaii. FEMA, USA.
17 FEMA-CCM (2005) Coastal Construction Manual. FEMA 55 Report, Edition 3, FEMA, USA.
18 Fenton, J. (1972) A ninth-order solution for the solitary wave. J. of Fluid Mech., Vol. 53, No. 2, pp. 257-271.   DOI
19 Fujima, K., Achmad, F., Shigihara, Y., and Mizutani, N. (2009) Estimation of Tsunami force Acting on Rectangular Structures. J. of Disaster Research. Vol. 4 , No. 6, pp. 404-409.   DOI
20 Fukui, Y., Nakamura, M., Shiraishi, H., and Sasaki, Y. (1963) Hydraulic study on tsunami. Coastal Engrg. in Japan, Vol. 6, pp. 67- 82.
21 Grimshaw, R. (1971) The solitary wave in water of variable depth: Part 2, J. Fluid Mech., Vol. 46, pp. 611-622.   DOI
22 Hamzah, M.A., Mase, H., and Takayama, T. (1998) Direct simulation of solitary wave runup and pressure on coastal barrier. Proc. of Coastal Engrg., JSCE, Vol. 45, pp. 176-180.
23 Hinatsu, M. (1992) Numerical simulation of unsteady viscous nonlinear waves using moving grid system fitted on a free surface, J. of Kansai Soc. Nav. Archit., Japan, No. 217, pp. 1-11.
24 Ikeno, M., Mori, N., and Tanaka, H. (2001) Experimental study on tsunami force and impulsive force by a drifter under breaking bore like tsunamis. Proc. of Coastal Engrg., JSCE, Vol. 48, pp. 846-850.   DOI
25 Hirt, C.W. and Nichols, B.D. (1981) Volume of fluid(VOF) method for the dynamics of free boundaries. J. of Comput. Phys., Vol. 39, pp. 201-225.   DOI   ScienceOn
26 Ikeno, M. and Tanaka, H. (2003) Experimental study on impulse force of drift body and tsunami runing up to land. Proc. of Coastal Engrg., JSCE, Vol. 50, pp. 721-725.   DOI
27 Ikeno, M., Matsuyama, M., and Tanaka, H. (1998) Shoaling soliton fission of tsunami on a shelf and wave pressure for tsunamiresistant design of breakwater by large wave flume-experiments. Proc. of Coastal Engrg., JSCE, Vol. 45, pp. 366-370.   DOI
28 Kleefsman, K.M.T., Fekken, G., Veldman, A.E.P., Iwanowski, B., and Buchner, B.(2005) A Volume-of-Fluid
29 Kunugi, T. (2000) : MARS for multiphase calculation. CFD J., Vol. 9, No. 1, IX-563.
30 Matsutomi, H. (1989) Impulsive force due to the collision of a bore with a floating body. Proc. of Coastal Engrg., JSCE, Vol. 36, pp. 574-578.   DOI
31 Matsutomi, H. (1991) An experimental study on pressure and total force due to bore. Proc. of Coastal Engrg., JSCE, Vol. 38, pp. 626-630.   DOI
32 Matsutomi, H. and Ohmukai, T. (1999) Laboratory experiments on fluid force of tsunami flooded flows. Proc. of Coastal Engrg., JSCE, Vol. 46, pp. 336-340.   DOI
33 Miyata, H. and Nishimura, S. (1985) Finite-difference simulation of nonlinear waves generated by ships of arbitrary three-dimensional configuration, J. Comput. Phys., Vol. 60, pp. 391-436.   DOI
34 Mizutani, S. and Imamura, F. (2000) Hydraulic ecperimental study on wave force of a bore acting on a structure. Proc. of Coastal Engrg., JSCE, Vol. 47, pp. 946-950.   DOI
35 Mizutani, S. and Imamura, F. (2002) Design of coastal structure including the impact and overflow on tsunamis. Proc. of Coastal Engrg., JSCE, Vol. 49, pp. 731-735.   DOI
36 Rudman, J.D. (1997) Volume-tracking methods for interfacial flow calculations. Int. J. Numer. Methods in Fluids, Vol. 24, pp. 671- 691.   DOI   ScienceOn
37 Ohyama, T. and Nadaoka, K. (1991) Development of a numerical wave tank for analysis of non-linear and irregular wave field, Fluid Dyna. Res., Vol. 8, pp. 231-251.   DOI
38 Ramsden, J.D. (1993) Tsunami : Forces on a vertical wall caused by long waves, bores, and surges on a dry bed. Ph.D. Thesis, California Institute of Technology, California, USA.
39 Ramsden, J.D. and Raichlen, F. (1990) Forces on vertical wall caused by incident bores, J. of Waterway, Port, Coastal, and Ocean Engrg, ASCE, Vol. 116, No. 5, pp. 592-613.   DOI
40 Simamora, C., Shigihara, Y., and Fujima, K. (2007) Experimental Study on Tsunami Forces Acting on Structures. J. of Coastal Engrg., JSCE, Vol. 54, pp. 831-835.   DOI
41 Smagorinsky, J. (1963) General circulation experiments with the primitive equations. Mon, Weath. Rev., Vol. 91, No. 3, pp. 99- 164.   DOI
42 Tanimoto, K., Takayama, T., Murakami, K., Murata, S., tsuruya, H., takahashi, S., Morikawa, M., Yoshimoto, Y., Nakano, S., and Hiraishi, T. (1983) Field and laboratory investigations of the tsunami caused by 1983 Nihonkai chubu earthquake. Technical note, PARI, Japan, No. 470, pp. 299.
43 Tanimoto, K., Tsuruya, H., and Nakano, S. (1984) Experimental study of tsunami force and investigation of the cause of sea wall damages during 1983 Nihonkai chubu earthquake. Proc. of 31th Japanese Conf. on Coastal Engrg., JSCE, pp. 257-261.
44 Tome, M.F. and McKee, S. (1994) GENSMAC : A computational marker and cell method for free-surface flows in general domains, J. of Comput. Phys., Vol. 110, pp. 171-186.   DOI   ScienceOn
45 Xiao, H. and Huang, W. (2008) Numerical modeling of wave runup and forces on an idealized beachfront house. Ocean Engrg., Vol. 35, pp. 106-116.   DOI   ScienceOn
46 Yeom, G.S., Mizutani, N., shiraishi, K., Usami, A., Miyajima, S., and Tomita, T. (2007) Study on behavior of drifting containers due to tsunami and collision forces. Proc. of Coastal Engrg., JSCE, Vol. 54, pp. 851-855.   DOI
47 Yeh, H. (2006) Maximum fluid forces in the tsunami runup zone. J. of Waterway, Port, Coastal, and Ocean Engrg, ASCE, Vol. 132, No. 6, pp. 496-500.   DOI   ScienceOn
48 Yeh, H. (2007) Design tsunami forces for onshore structures. J. of Disaster Research, Vol. 2, No. 6, pp. 1-6.
49 Yeh, H. and Robertson, I. (2005) Development of design guideline for tsunami shelters, First International Conference on Urban Disaster Reduction, Kobe, Japan.
50 Yeom, G.S., Nakamura, T., Usami, A., and Mizutani, N. (2008) Study on estimation of collision force of a drifted container using fluid-structure interaction analysis.. Proc. of Coastal Engrg., JSCE, Vol. 55, pp. 281-285.   DOI