DOI QR코드

DOI QR Code

ON THE RATES OF THE ALMOST SURE CONVERGENCE FOR SELF-NORMALIZED LAW OF THE ITERATED LOGARITHM

  • Pang, Tian-Xiao (Department of Mathematics Yuquan Campus Zhejiang University)
  • Received : 2010.03.22
  • Published : 2011.11.30

Abstract

Let {$X_i$, $i{\geq}1$} be a sequence of i.i.d. nondegenerate random variables which is in the domain of attraction of the normal law with mean zero and possibly infinite variance. Denote $S_n={\sum}_{i=1}^n\;X_i$, $M_n=max_{1{\leq}i{\leq}n}\;{\mid}S_i{\mid}$ and $V_n^2={\sum}_{i=1}^n\;X_i^2$. Then for d > -1, we showed that under some regularity conditions, $$\lim_{{\varepsilon}{\searrow}0}{\varepsilon}^2^{d+1}\sum_{n=1}^{\infty}\frac{(loglogn)^d}{nlogn}I\{M_n/V_n{\geq}\sqrt{2loglogn}({\varepsilon}+{\alpha}_n)\}=\frac{2}{\sqrt{\pi}(1+d)}{\Gamma}(d+3/2)\sum_{k=0}^{\infty}\frac{(-1)^k}{(2k+1)^{2d+2}}\;a.s.$$ holds in this paper, where If g denotes the indicator function.

Keywords

References

  1. L. E. Baum and M. Katz, Convergence rates in the law of large numbers, Trans. Amer. Math. Soc. 120 (1965), 108-123. https://doi.org/10.1090/S0002-9947-1965-0198524-1
  2. R. Chen, A remark on the tail probability of a distribution, J. Multivariate Anal. 8 (1978), no. 2, 328-333. https://doi.org/10.1016/0047-259X(78)90084-2
  3. M. Csorgo and P. Revesz, Strong Approximations in Probability and Statistics, Academic, New York, 1981.
  4. M. Csorgo, B. Szyszkowicz, and Q. Y. Wang, Donsker's theorem for self-normalized partial sums processes, Ann. Probab. 31 (2003), no. 3, 1228-1240. https://doi.org/10.1214/aop/1055425777
  5. V. H. de la Pena, T. L. Lai, and Q. M. Sha, Self-Normalized Processes: Limit Theory and Statistical Applications, Springer, New York, 2009.
  6. P. Erdos, On a theorem of Hsu and Robbins, Ann. Math. Statist. 20 (1949), 286-291. https://doi.org/10.1214/aoms/1177730037
  7. A. Gut and A. Spataru, Precise asymptotics in the law of the iterated logarithm, Ann. Probab. 28 (2000), no. 4, 1870-1883. https://doi.org/10.1214/aop/1019160511
  8. C. C. Heyde, A supplement to the strong law of large numbers, J. Appl. Probab. 12 (1975), 173-175. https://doi.org/10.2307/3212424
  9. P. L. Hsu and H. Robbins, Complete convergence and the law of large numbers, Proc. Natl. Acad. Sci. U.S.A. 33 (1947), 25-31. https://doi.org/10.1073/pnas.33.2.25
  10. T. L. Lai and Q. M. Shao, Self-normalized limit theorems in probability and statistics. In: Asymptotic Theory in Probability and Statistics with Applications (Editors: T. L. Lai, L. F. Qian, and Q. M. Shao), International Press of Boston. pp. 3-43, 2007.
  11. T. X. Pang, L. X. Zhang, and J. F. Wang, Precise asymptotics in the self-normalized law of the iterated logarithm, J. Math. Anal. Appl. 340 (2008), no. 2, 1249-1262. https://doi.org/10.1016/j.jmaa.2007.09.054
  12. Q. M. Shao, Self-normalized large deviations, Ann. Probab. 25 (1997), no. 1, 285-328. https://doi.org/10.1214/aop/1024404289
  13. A. Spataru, Precise asymptotics in Spitzer's law of large numbers, J. Theoret. Probab. 12 (1999), no. 3, 811-819. https://doi.org/10.1023/A:1021636117551
  14. L. X. Zhang, Precise rates in the law of the iterated logarithm, Available at http://arxiv1.library.cornell.edu/abs/math/0610519v1.