DOI QR코드

DOI QR Code

A Study on Experimental Test of a Small Scale Hingeless Rotor

축소형 무힌지 로터 시험에 관한 연구

  • Received : 2011.05.25
  • Accepted : 2011.10.05
  • Published : 2011.12.01

Abstract

It is possible to study the load characteristics of full-scale hingeless rotor with the changing of physical smallscaled configurations such as rectangular and paddle blades, and metal and composite hubs. In this study, a static test, and a ground and wind-tunnel test were carried out using small-scale rotor models. The static test was carried out to confirm structural stiffness, characteristics of inertia, natural frequency, and damping ratio of rotors, and the ground and wind-tunnel test was carried out to confirm the stability and aerodynamic characteristics under hovering and forward flight conditions. According to the test results, the vertical load in the case of a combination of a small composite hub with paddle blades was higher than that in the case of a metal hub with paddle blades at same condition. Further, it was confirmed that the restraint of the combination of composite hub can be more flexible than the metal hub for the motion of paddle blades.

축소화된 사각형 및 패들형 블레이드, 금속재 및 복합재 허브와 같은 물리적인 축소형 형상의 변화에 따른 실물크기 무힌지 로터의 하중특성에 대하여 연구하였다. 이를 위하여 축소형 로터 모델을 활용한 정적시험, 지상 및 풍동시험을 수행하였다. 정적시험은 구조강성 및 관성특성, 고유진동수 및 감쇄율을 확인하기 위해 수행하였으며, 지상 및 풍동시험은 정지 및 전진 비행조건에서 안정성 및 공력특성을 확인하기 위해 수행하였다. 시험결과에 따르면, 동일한 조건에서 축소형 복합재 허브와 패들형 블레이드를 결합한 경우가 수직하중이 더 높았다. 축소형 복합재 허브와 패들형 블레이드가 결합된 형태가 금속재 허브의 결합된 형태보다 패들형 블레이드의 운동을 더 유연하게 구속하고 있음을 확인할 수 있었다.

Keywords

References

  1. Benton H. Lau, Alexander W. Louie, Nicholas Griffiths and Costantinos P. Sotirou, 1993, "Performance and Rotor Loads Measurements of the Lynx XZ170 Helicopter with Rectangular Blades," NASA Technical Memorandum 104000, pp. 5-14.
  2. Crouse G.L., Jr. J. G. Leishman, 1992, "Interactional Aerodynamic Effects on Rotor Performance in Hover and Forward Flight," 48th Annual Forum of the American Helicopter Society.
  3. Friedmann P.P., 2004, "Aeroelastic scaling for rotarywing aircraft with applications," Journal of Fluids and Structures 19, pp. 635-650. https://doi.org/10.1016/j.jfluidstructs.2004.03.003
  4. Gene Joo, et al., 2000, "The Development of Smallscale Helicopter Rotor Test Stand," 7th Symposium of Aircraft Developmental Technology.
  5. Gene Joo, et al., 2003, "The Pre-Study on the Core Technology of Hingeless Hub system for Helicopter," Report. KARI.
  6. Hunt G. K., 1973, "Similarity Requirements for Aeroelastic Models of Helicopter Rotors," Royal Aircraft Establishment, C.P. No. 1245, pp. 2-7.
  7. Jouannet Christopher, Ludstrom D., Amadori K. and Berry P., 2008, "Design of a Very Light Jet and a Dynamically Scaled Demonstrator," 46th AIAA Aerospace Science Meeting and Exhibit, AIAA-2008- 137, Reno, Nevada.
  8. Mettler Bernard, 2003, Identification Modeling and Characteristics of Miniature Rotorcraft, Kluwer Academic Publishers, London, pp. 129-161.
  9. Philippe J.J., 1990, "Considerations on Wind-Tunnel testing techniques for rotorcraft, In aerodynamics of Rotorcraft," AGARD-R-781, ONERA.
  10. Wolowicz Chester H., James S. Bowman, Jr., and William P. Gilbert, 1979, "Similarity Requirements and Scaling Relationships as Applied to Model Testing," NASA Technical Paper 1435, c.1, pp. 8-32.