DOI QR코드

DOI QR Code

소수계량함수

The Prime Counting Function

  • 이상운 (강릉원주대학교 멀티미디어공학과) ;
  • 최명복 (강릉원주대학교 멀티미디어공학과)
  • Lee, Sang-Un (Dept. of Multimedia Science, Gangneung-Wonju National University) ;
  • Choi, Myeong-Bok (Dept. of Multimedia Science, Gangneung-Wonju National University)
  • 투고 : 2011.05.13
  • 심사 : 2011.07.25
  • 발행 : 2011.10.31

초록

리만의 제타함수 $\zeta(s)$는 주어진 수 x보다 작은 소수의 개수 $\pi$(x)를 구하는 해답으로 알려져 있으며, 소수정리에서 지금까지 리만의 제타 함수 이외에 $\frac{x}{lnx}$,Li(x)와 R(x)의 근사치 함수가 제안되었다. 여기서 $\pi$(x)와의 오차는 R(x) < Li(x) < $\frac{x}{lnx}$이다. 로그적분함수 Li(x) = $\int_{2}^{x}\frac{1}{lnt}dt$, ~ $\frac{x}{lnx}\sum\limits_{k=0}^{\infty}\frac{k!}{(lnx)^k}=\frac{x}{lnx}(1+\frac{1!}{(lnx)^1}+\frac{2!}{(lnx)^2}+\cdots)$ 이다. 본 논문은 $\pi$(x)는 유한급수��Li(x)로 표현됨을 보이며, 일반화된 $\sqrt{ax}{\pm}{\beta}$의 소수계량함수를 제안한다. 첫 번째로, $\pi$(x)는 $0{\leq}t{\leq}2k$의 유한급수인 $Li_3(x)=\frac{x}{lnx}(\sum\limits_{t=0}^{{\alpha}}\frac{k!}{(lnx)^k}{\pm}{\beta})$$Li_4(x)=\lfloor\frac{x}{lnx}(1+{\alpha}\frac{k!}{(lnx)^k}{\pm}{\beta})\rfloor$, $k\geq2$ 함수로 표현됨을 보였다. $Li_3$(x)는 $\pi(x){\simeq}Li_3(x)$가 되도록 ${\alpha}$ 값을 구하고 오차를 보정하는 ${\beta}$ 값을 갖도록 조정하였다. 이 결과 $x=10^k$에 대해 $Li_3(x)=Li_4(x)=\pi(x)$를 얻었다. 일반화된 함수로 $\pi(x)=\sqrt{{\alpha}x}{\pm}{\beta}$를 제안하였다. 제안된 $\pi(x)=\sqrt{{\alpha}x}{\pm}{\beta}$ 함수는 리만의 제타함수에 비해 소수를 월등히 계량할 수 있었다.

The Riemann's zeta function $\zeta(s)$ has been known as answer for a number of primes $\pi$(x) less than given number x. In prime number theorem, there are another approximation function $\frac{x}{lnx}$,Li(x), and R(x). The error about $\pi$(x) is R(x) < Li(x) < $\frac{x}{lnx}$. The logarithmic integral function is Li(x) = $\int_{2}^{x}\frac{1}{lnt}dt$ ~ $\frac{x}{lnx}\sum\limits_{k=0}^{\infty}\frac{k!}{(lnx)^k}=\frac{x}{lnx}(1+\frac{1!}{(lnx)^1}+\frac{2!}{(lnx)^2}+\cdots)$. This paper shows that the $\pi$(x) can be represent with finite Li(x), and presents generalized prime counting function $\sqrt{{\alpha}x}{\pm}{\beta}$. Firstly, the $\pi$(x) can be represent to $Li_3(x)=\frac{x}{lnx}(\sum\limits_{t=0}^{{\alpha}}\frac{k!}{(lnx)^k}{\pm}{\beta})$ and $Li_4(x)=\lfloor\frac{x}{lnx}(1+{\alpha}\frac{k!}{(lnx)^k}{\pm}{\beta})}k\geq2$ such that $0{\leq}t{\leq}2k$. Then, $Li_3$(x) is adjusted by $\pi(x){\simeq}Li_3(x)$ with ${\alpha}$ and error compensation value ${\beta}$. As a results, this paper get the $Li_3(x)=Li_4(x)=\pi(x)$ for $x=10^k$. Then, this paper suggests a generalized function $\pi(x)=\sqrt{{\alpha}x}{\pm}{\beta}$. The $\pi(x)=\sqrt{{\alpha}x}{\pm}{\beta}$ function superior than Riemann's zeta function in representation of prime counting.

키워드

참고문헌

  1. D. Zagier, Newman's Short Proof of the Prime Number Theorem," American Mathematical Monthly, Vol. 104, No. 8, pp. 705-708, 1997. https://doi.org/10.2307/2975232
  2. A. O. L. Atkin and D. J. Bernstein,"Prime Sieves Using Binary Quadratic Forms," Mathematics of Computation, Vol. 73, pp: 1023-1030, 2004.
  3. B. Riemann, "Ueber die Anzahl der Primzahlen unter einer gegebenen Grosse," Monatsberichte der Koniglich Preussischen Akademie der Wissenschaften zu Berlin, 1859. (D. R. Wilkins, "On the Number of Primes Less Than a Given Quantity, 1998.
  4. J. M. Borwein, D. M. Bradley, and R. E. Crandall, "Computational Strategies for the Riemann Zata Function," Journal of Computational Applied Mathematics, Vol. 121, pp: 247-296, 2000. https://doi.org/10.1016/S0377-0427(00)00336-8
  5. T. Kotnik, "The Prime-counting Function and its Analytic Approximations," Advanced Computat ional Mathematics, Vol. 29, No. 1, pp: 55-70, 2008. https://doi.org/10.1007/s10444-007-9039-2
  6. D. Goldfeld, "The Elementary Proof of the Prime Number Theorem: An Historical Perspective," The Mathematical Intelligencer, Vol. 31, No. 3, pp. 18-23, 2009. https://doi.org/10.1007/s00283-009-9063-9
  7. N. M. Temme, "Exponential, Logarithmic, Sine, and Cosign Integrals," NIST Handbook of Mathematical Functions, Cambridge University Press, 2010.
  8. G. H. Hardy and E. M. Wright, "An Introduction to the Theory of Numbers," 5th ed., pp: 355-356, Oxford, England: Oxford University Press, 1979.