• Title/Summary/Keyword: 소수계량함수

Search Result 1, Processing Time 0.02 seconds

The Prime Counting Function (소수계량함수)

  • Lee, Sang-Un;Choi, Myeong-Bok
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.10
    • /
    • pp.101-109
    • /
    • 2011
  • The Riemann's zeta function $\zeta(s)$ has been known as answer for a number of primes $\pi$(x) less than given number x. In prime number theorem, there are another approximation function $\frac{x}{lnx}$,Li(x), and R(x). The error about $\pi$(x) is R(x) < Li(x) < $\frac{x}{lnx}$. The logarithmic integral function is Li(x) = $\int_{2}^{x}\frac{1}{lnt}dt$ ~ $\frac{x}{lnx}\sum\limits_{k=0}^{\infty}\frac{k!}{(lnx)^k}=\frac{x}{lnx}(1+\frac{1!}{(lnx)^1}+\frac{2!}{(lnx)^2}+\cdots)$. This paper shows that the $\pi$(x) can be represent with finite Li(x), and presents generalized prime counting function $\sqrt{{\alpha}x}{\pm}{\beta}$. Firstly, the $\pi$(x) can be represent to $Li_3(x)=\frac{x}{lnx}(\sum\limits_{t=0}^{{\alpha}}\frac{k!}{(lnx)^k}{\pm}{\beta})$ and $Li_4(x)=\lfloor\frac{x}{lnx}(1+{\alpha}\frac{k!}{(lnx)^k}{\pm}{\beta})}k\geq2$ such that $0{\leq}t{\leq}2k$. Then, $Li_3$(x) is adjusted by $\pi(x){\simeq}Li_3(x)$ with ${\alpha}$ and error compensation value ${\beta}$. As a results, this paper get the $Li_3(x)=Li_4(x)=\pi(x)$ for $x=10^k$. Then, this paper suggests a generalized function $\pi(x)=\sqrt{{\alpha}x}{\pm}{\beta}$. The $\pi(x)=\sqrt{{\alpha}x}{\pm}{\beta}$ function superior than Riemann's zeta function in representation of prime counting.