DOI QR코드

DOI QR Code

A 50-mA 1-nF Low-Voltage Low-Dropout Voltage Regulator for SoC Applications

  • Giustolisi, Gianluca (Dipartimento di Ingegneria Elettrica, Elettronica e dei Sistemi, Universita degli Studi di Catania) ;
  • Palumbo, Gaetano (Dipartimento di Ingegneria Elettrica, Elettronica e dei Sistemi, Universita degli Studi di Catania) ;
  • Spitale, Ester (Dipartimento di Ingegneria Elettrica, Elettronica e dei Sistemi, Universita degli Studi di Catania)
  • Received : 2010.09.29
  • Accepted : 2010.01.22
  • Published : 2010.08.30

Abstract

In this paper, we present a low-voltage low-dropout voltage regulator (LDO) for a system-on-chip (SoC) application which, exploiting the multiplication of the Miller effect through the use of a current amplifier, is frequency compensated up to 1-nF capacitive load. The topology and the strategy adopted to design the LDO and the related compensation frequency network are described in detail. The LDO works with a supply voltage as low as 1.2 V and provides a maximum load current of 50 mA with a drop-out voltage of 200 mV: the total integrated compensation capacitance is about 40 pF. Measurement results as well as comparison with other SoC LDOs demonstrate the advantage of the proposed topology.

Keywords

References

  1. G.A. Rincon-Mora and P.E. Allen, "A Low-Voltage, Low Quiescent Current, Low Drop Out Regulator," IEEE J. Solid-State Circuits, vol. 33, no. 1, Jan. 1998, pp. 36-44. https://doi.org/10.1109/4.654935
  2. G.A. Rincon-Mora and P.E. Allen, "Optimized Frequency-Shaping Circuit Topologies for LDO''s," IEEE Trans. Circuits Syst. II, vol. 45, no. 6, Jun. 1998, pp. 703-708. https://doi.org/10.1109/82.686689
  3. A. Low and P. Hasler, "Basics of Floating-Gate Low-Dropout Voltage Regulators," Proc. IEEE MWSCAS, Aug. 2000, pp. 1048-1051.
  4. C.K. Chava and J. Silva-Martinez, "A Robust Frequency Compensation Scheme for LDO Regulators," Proc. IEEE ICECS, vol. 5, May 2002, pp. 825-828.
  5. R. Tantawy and E.J. Brauer, "Performance Evaluation of CMOS Low Drop-out Voltage Regulators," Proc. IEEE MWSCAS, vol. 1, Jul. 2004, pp. 141-144.
  6. P. Hazucha et al., "Area-Efficient Linear Regulator With Ultra-Fast Load Regulation," IEEE J. Solid-State Circuits, vol. 40, no. 4, Apr. 2005, pp. 933-940. https://doi.org/10.1109/JSSC.2004.842831
  7. H.C. Lin, H.H. Wu, and T.Y. Chang, "An Active-Frequency Compensation Scheme for CMOS Low-Dropout Regulators With Transient-Response Improvement," IEEE Trans. Circuits Syst. II, vol. 55, no. 9, Sept. 2008, pp. 853-857. https://doi.org/10.1109/TCSII.2008.924366
  8. H. Lee, P.K.T. Mok, and K.N. Leung, "Design of Low-Power Analog Drivers Based on Slew-Rate Enhancement Circuits for CMOS Low-Dropout Regulators," IEEE Trans. Circuits Syst. II, vol. 52, no. 9, Sept. 2005, pp. 563-567. https://doi.org/10.1109/TCSII.2005.850781
  9. C.K. Chava and J. Silva-Martìnez, "A Frequency Compensation Scheme for LDO Voltage Regulators," IEEE Trans. Circuits Syst. I, vol. 51, no. 6, Jun. 2004, pp. 1041-1050. https://doi.org/10.1109/TCSI.2004.829239
  10. X. Lai et al., "A 3-A CMOS Low-Dropout Regulator with Adaptive Miller Compensation," Analog Integr. Circuits Signal Process., vol. 49, no. 1, 2006, pp. 5-10. https://doi.org/10.1007/s10470-006-8697-1
  11. G. Giustolisi, G. Palumbo, and E. Spitale, "Low-Voltage LDO Compensation Strategy based on Current Amplifiers," IEEE ISCAS, Seattle, USA, May 2008, pp. 2681-2684.
  12. G. Giustolisi and G. Palumbo "Dynamic-Biased Capacitor-Free NMOS LDO," Electron. Letters, vol. 45, no. 22, Oct. 2009, pp. 1140-1141. https://doi.org/10.1049/el.2009.1220
  13. M. Loikkanen and J. Kostamovaara, "A Capacitor-Free CMOS Low-Dropout Regulator," Proc. IEEE ISCAS, May 2007, pp. 1915-1918.
  14. T.Y. Man et al., "Development of Single-Transistor-Control LDO Based on Flipped Voltage Follower for SoC," IEEE Trans. Circuits Syst. I, vol. 55, no. 5, Jun. 2008, pp. 1392-1401. https://doi.org/10.1109/TCSI.2008.916568
  15. T.Y. Man, P.K. T. Mok, and M. Chan, "A High Slew-Rate Push–Pull Output Amplifier for Low-Quiescent Current Low-Dropout Regulators With Transient-Response Improvement," IEEE Trans. Circuits Syst. II, vol. 54, no. 9, Sept. 2007, pp. 755-759. https://doi.org/10.1109/TCSII.2007.900347
  16. K.N. Leung and P.K.T. Mok, "A Capacitor-Free CMOS Low-Dropout Regulator with Damping-Factor-Control Frequency Compensation," IEEE J. Solid-State Circuits, vol. 38, no. 10, Oct. 2003, pp. 1691-1702. https://doi.org/10.1109/JSSC.2003.817256
  17. R.J. Milliken, J. Silva-Martìnez, and E. Sànchez-Sinencio, "Full On-Chip CMOS Low-Dropout Voltage Regulator," IEEE Trans. Circuits Syst. I, vol. 54, no. 9, Sept. 2007, pp. 1879-1890. https://doi.org/10.1109/TCSI.2007.902615
  18. S.K. Lau et al., "A Low-Dropout Regulator for SoC With QReduction," IEEE J. Solid-State Circuits, vol. 42, no. 3, Mar. 2007, pp. 658-664. https://doi.org/10.1109/JSSC.2006.891496
  19. G. Giustolisi, G. Palumbo, and E. Spitale, "LDO Compensation Strategy Based on Current Buffer/Amplifiers," Proc. IEEE ECCTD, Seville (Spain), Aug. 2007, pp. 116-119.
  20. G. Palmisano and G. Palumbo, "A Compensation Strategy for Two-Stage CMOS Opamps Based on Current Buffer," IEEE Trans. Circuits Syst. I, vol. 44, no. 3, Mar. 1997, pp. 257-262. https://doi.org/10.1109/81.557376
  21. G. Palumbo and S. Pennisi, Feedback Amplifiers (Theory and Design), Kluwer Academic Publishers, 2002.
  22. W. Aloisi, G. Palumbo, and S. Pennisi, "Design Methodology of Miller Frequency Compensation with Current Buffer/Amplifier," IET Circuits Devices Syst., vol. 2, no. 2, Apr. 2008, pp. 227-233. https://doi.org/10.1049/iet-cds:20060188
  23. G.A. Rincon-Mora, "Active Capacitor Multiplier in Miller-Compensated Circuits," IEEE J. Solid-State Circuits, vol. 35, no. 1, Jan. 2000, pp. 26-32. https://doi.org/10.1109/4.818917
  24. M. Al-Shyoukh, H. Lee, and R. Perez, "A Transient-Enhanced Low-Quiescent Current Low-Dropout Regulator With Buffer Impedance Attenuation," IEEE J. Solid-State Circuits, vol. 42, no. 8, Aug. 2007, pp. 1732-1742 https://doi.org/10.1109/JSSC.2007.900281
  25. W. Oh and B. Bakkaloglu, "A CMOS Low-Dropout Regulator With Current-Mode Feedback Buffer Amplifier," IEEE Trans. Circuits Syst. II, vol. 54, no. 10, Oct. 2007, pp. 922-926. https://doi.org/10.1109/TCSII.2007.901621
  26. W. Oh et al., "A CMOS Low Noise, Chopper Stabilized Low-Dropout Regulator With Current-Mode Feedback Error Amplifier," IEEE Trans. Circuits Syst. I, vol. 55, no. 10, Nov. 2008, pp. 3006-3015. https://doi.org/10.1109/TCSI.2008.923278
  27. W. Chen, W.H. Ki, and P.K.T. Mok, "Dual-Loop Feedback for Fast Low Dropout Regulators," Proc. IEEE PESC, vol. 3, Jun. 2001, pp. 1265-1269.
  28. G. Giustolisi and G. Palumbo, "An Approach to Test the Open-Loop Parameters of Feedback Amplifiers," IEEE Trans. Circuits Syst. I, vol. 49, no. 1, Jan. 2002, pp. 70-75. https://doi.org/10.1109/81.974877
  29. A. J. Lopez-Martìn et al., "Low-Voltage Super Class AB CMOS OTA Cells with Very High Slew Rate and Power Efficiency," IEEE J. Solid-State Circuits, vol. 40, no. 5, May 2005, pp. 1068-1077. https://doi.org/10.1109/JSSC.2005.845977

Cited by

  1. Robust Miller Compensation With Current Amplifiers Applied to LDO Voltage Regulators vol.59, pp.9, 2010, https://doi.org/10.1109/tcsi.2012.2185306
  2. Three-Stage Dynamic-Biased CMOS Amplifier With a Robust Optimization of the Settling Time vol.62, pp.11, 2010, https://doi.org/10.1109/tcsi.2015.2476396
  3. Efficient Design Strategy for Optimizing the Settling Time in Three-Stage Amplifiers Including Small- and Large-Signal Behavior vol.10, pp.5, 2010, https://doi.org/10.3390/electronics10050612
  4. A gm/ID-Based Design Strategy for IoT and Ultra-Low-Power OTAs with Fast-Settling and Large Capacitive Loads vol.11, pp.2, 2010, https://doi.org/10.3390/jlpea11020021