Enigma of Small Peptides Ubiquitin and SUMO in Plants

  • Seo, Hak Soo (Department of Plant Science, Research Institute for Agriculture and Life Sciences, Plant Genomics and Breeding Institute, and Bio-MAX Institute, Seoul National University)
  • Received : 2010.07.15
  • Published : 2010.09.30

Abstract

Post-translational covalent modifications by small molecules or peptides remodel target proteins. One such modification, made by ubiquitin or small ubiquitin-related modifier (SUMO), is a rapidly expanding field in cell signaling pathways. Ubiquitin attachment controls the turnover and degradation of target proteins while SUMO conjugation regulates their activity and function. Recent studies report many examples of cross-talk between ubiquitin and SUMO pathways, indicating that the boundary is no longer clear. Here, we review recent progress concerning how ubiquitin and SUMO participate in new regulatory roles in plant cell, and how ubiquitination and sumoylation control plant growth and development.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea

References

  1. Budhiraja R, Hermkes R, Muller S, Schmidt J, Colby T, Panigrahi K, Coupland G, Bachmair A. 2009. Substrates related to chromatin and to RNA-dependent processes are modified by Arabidopsis SUMO isoforms that differ in a conserved residue with influence on desumoylation. Plant Physiology 149:1529-1540. https://doi.org/10.1104/pp.108.135053
  2. Chosed R, Mukherjee S, Lois LM, Orth K. 2006. Evolution of a signalling system that incorporates both redundancy and diversity: Arabidopsis SUMOylation. Biochemical Journal 398:521-529. https://doi.org/10.1042/BJ20060426
  3. Ciechanover A, Schwartz AL. 1998. The ubiquitin-proteasome pathway: the complexity and myriad functions of proteins death. Proceedings of the National Academy of Sciences of the United States of America 95:2727-2730. https://doi.org/10.1073/pnas.95.6.2727
  4. Denuc A, Marfany G. 2010. SUMO and ubiquitin paths converge. Biochemical Society Transactions 38:34-39. https://doi.org/10.1042/BST0380034
  5. Garcia-Dominguez M, March-Diaz R, Reyes JC. 2008. The PHD domain of plant PIAS proteins mediates sumoylation of bromodomain GTE proteins. Journal of Biological Chemistry 283:21469-21477. https://doi.org/10.1074/jbc.M708176200
  6. Geiss-Friedlander R, Melchior F. 2007. Concepts in sumoylation: a decade on. Nature Reviews Molecular Cell Biology 8:947-956. https://doi.org/10.1038/nrm2293
  7. Hay RT. 2005. SUMO: a history of modification. Molecular Cell 18:1-12. https://doi.org/10.1016/j.molcel.2005.03.012
  8. Hunter T. 2007. The age of crosstalk: phosphorylation, ubiquitination, and beyond. Molecular Cell 28:730-738. https://doi.org/10.1016/j.molcel.2007.11.019
  9. Igawa T, Fujiwara M, Takahashi H, Sawasaki T, Endo Y, Seki M, Shinozaki K, Fukao Y, Yanagawa, Y. 2009. Isolation and identification of ubiquitin-related proteins from Arabidopsis seedlings. Journal of Experimental Botany 60:3067-3073. https://doi.org/10.1093/jxb/erp134
  10. Manzano C, Abraham Z, Lopez-Torrejon G, Del Pozo JC. 2008., Identification of ubiquitinated proteins in Arabidopsis. Plant Moecularl Biology 68:145-158. https://doi.org/10.1007/s11103-008-9358-9
  11. Maor R, Jones A, Nuhse TS, Studholme DJ, Peck SC, Shirasu K. 2007. Multidimensional protein identification technology (MudPIT) analysis of ubiquitinated proteins in plants. Molecular and Cellular Proteomics 6:601-610. https://doi.org/10.1074/mcp.M600408-MCP200
  12. Mazzucotelli E, Belloni S, Marone D, De Leonardis A, Guerra D, Di Fonzo N, Cattivelli L, Mastrangelo A. 2006. The e3 ubiquitin ligase gene family in plants: regulation by degradation. Current Genomics 7:509-522. https://doi.org/10.2174/138920206779315728
  13. Miura K, Rus A, Sharkhuu A, Yokoi S, Karthikeyan AS, Raghothama KG, Baek D, Koo YD, Jin JB, Bressan RA, Yun DJ, Hasegawa PM. 2005. The Arabidopsis SUMO E3 ligase SIZ1 controls phosphate deficiency responses. Proceedings of the National Academy of Sciences of the United States of America 102:7760-7765. https://doi.org/10.1073/pnas.0500778102
  14. Miura K, Jin JB, Lee J, Yoo CY, Stirm V, Miura T, Ashworth EN, Bressan RA, Yun DJ, Hasegawa PM. 2007. SIZ1-mediated sumoylation of ICE1 controls CBF3/DREB1A expression and freezing tolerance in Arabidopsis. Plant Cell 9:1403-1414.
  15. Miura K, Lee J, Jin JB, Yoo CY, Miura T, Hasegawa PM. 2009. Sumoylation of ABI5 by the Arabidopsis SUMO E3 ligase SIZ1 negatively regulates abscisic acid signaling. Proceedings of the National Academy of Sciences of the United States of America 106:5418-5423. https://doi.org/10.1073/pnas.0811088106
  16. Miura, K., Lee, J., Miura, T., Hasegawa, P. M. SIZ1 controls cell growth and plant development in Arabidopsis through salicylic acid. Plant and Cell Physiology 51:103-113 (2010). https://doi.org/10.1093/pcp/pcp171
  17. Okada S, Nagabuchi M, Takamura Y, Nakagawa T, Shinmyozu K, Nakayama J, Tanaka K. 2009. Reconstitution of Arabidopsis thaliana SUMO pathways in E. coli: functional evaluation of SUMO machinery proteins and mapping of SUMOylation sites by mass spectrometry. Plant Cell and Physiology 50:1049-1061. https://doi.org/10.1093/pcp/pcp056
  18. Prudden J, Pebernard S, Raffa G, Slavin DA, Perry JJ, Tainer JA, McGowan CH, Boddy MN. 2007. SUMOtargeted ubiquitin ligases in genome stability. EMBO Journal 26:4089-4101. https://doi.org/10.1038/sj.emboj.7601838
  19. Saracco SA, Hansson M, Scalf M, Walker JM, Smith LM, Vierstra RD. 2009. Tandem affinity purification and mass spectrometric analysis of ubiquitylated proteins in Arabidopsis. Plant Journal 59:344-358. https://doi.org/10.1111/j.1365-313X.2009.03862.x
  20. Schrader EK, Harstad KG, Matouschek A. 2009. Targeting proteins for degradation. Nature Chemical Biology 5:815-822. https://doi.org/10.1038/nchembio.250
  21. Sun H, Leverson JD, Hunter T. 2007. Conserved function of RNF4 family proteins in eukaryotes: targeting a ubiquitin ligase to SUMOylated proteins. EMBO Journal 26:4102-4112. https://doi.org/10.1038/sj.emboj.7601839
  22. Uzunova K, Gottsche K, Miteva M, Weisshaar SR, Glanemann C, Schnellhardt M, Niessen M, Scheel H, Hofmann K, Johnson ES, Praefcke GJ, Dohmen RJ. 2007. Ubiquitin-dependent proteolytic control of SUMO conjugates. Journal of Biological Chemistry 282:34167-75. https://doi.org/10.1074/jbc.M706505200
  23. Wilkinson KA, Henley JM. 2010. Mechanisms, regulation and consequences of protein SUMOylation. Biochemical Journal 428:133-145. https://doi.org/10.1042/BJ20100158