Browse > Article

Enigma of Small Peptides Ubiquitin and SUMO in Plants  

Seo, Hak Soo (Department of Plant Science, Research Institute for Agriculture and Life Sciences, Plant Genomics and Breeding Institute, and Bio-MAX Institute, Seoul National University)
Publication Information
Korean Journal of Breeding Science / v.42, no.4, 2010 , pp. 339-343 More about this Journal
Abstract
Post-translational covalent modifications by small molecules or peptides remodel target proteins. One such modification, made by ubiquitin or small ubiquitin-related modifier (SUMO), is a rapidly expanding field in cell signaling pathways. Ubiquitin attachment controls the turnover and degradation of target proteins while SUMO conjugation regulates their activity and function. Recent studies report many examples of cross-talk between ubiquitin and SUMO pathways, indicating that the boundary is no longer clear. Here, we review recent progress concerning how ubiquitin and SUMO participate in new regulatory roles in plant cell, and how ubiquitination and sumoylation control plant growth and development.
Keywords
Post-translational modification; Ubiquitin; SUMO; ubiquitination; sumoylation; cross-talk;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Budhiraja R, Hermkes R, Muller S, Schmidt J, Colby T, Panigrahi K, Coupland G, Bachmair A. 2009. Substrates related to chromatin and to RNA-dependent processes are modified by Arabidopsis SUMO isoforms that differ in a conserved residue with influence on desumoylation. Plant Physiology 149:1529-1540.   DOI   ScienceOn
2 Chosed R, Mukherjee S, Lois LM, Orth K. 2006. Evolution of a signalling system that incorporates both redundancy and diversity: Arabidopsis SUMOylation. Biochemical Journal 398:521-529.   DOI   ScienceOn
3 Ciechanover A, Schwartz AL. 1998. The ubiquitin-proteasome pathway: the complexity and myriad functions of proteins death. Proceedings of the National Academy of Sciences of the United States of America 95:2727-2730.   DOI   ScienceOn
4 Denuc A, Marfany G. 2010. SUMO and ubiquitin paths converge. Biochemical Society Transactions 38:34-39.   DOI   ScienceOn
5 Garcia-Dominguez M, March-Diaz R, Reyes JC. 2008. The PHD domain of plant PIAS proteins mediates sumoylation of bromodomain GTE proteins. Journal of Biological Chemistry 283:21469-21477.   DOI   ScienceOn
6 Geiss-Friedlander R, Melchior F. 2007. Concepts in sumoylation: a decade on. Nature Reviews Molecular Cell Biology 8:947-956.   DOI   ScienceOn
7 Hay RT. 2005. SUMO: a history of modification. Molecular Cell 18:1-12.   DOI   ScienceOn
8 Hunter T. 2007. The age of crosstalk: phosphorylation, ubiquitination, and beyond. Molecular Cell 28:730-738.   DOI   ScienceOn
9 Igawa T, Fujiwara M, Takahashi H, Sawasaki T, Endo Y, Seki M, Shinozaki K, Fukao Y, Yanagawa, Y. 2009. Isolation and identification of ubiquitin-related proteins from Arabidopsis seedlings. Journal of Experimental Botany 60:3067-3073.   DOI   ScienceOn
10 Manzano C, Abraham Z, Lopez-Torrejon G, Del Pozo JC. 2008., Identification of ubiquitinated proteins in Arabidopsis. Plant Moecularl Biology 68:145-158.   DOI   ScienceOn
11 Maor R, Jones A, Nuhse TS, Studholme DJ, Peck SC, Shirasu K. 2007. Multidimensional protein identification technology (MudPIT) analysis of ubiquitinated proteins in plants. Molecular and Cellular Proteomics 6:601-610.   DOI   ScienceOn
12 Mazzucotelli E, Belloni S, Marone D, De Leonardis A, Guerra D, Di Fonzo N, Cattivelli L, Mastrangelo A. 2006. The e3 ubiquitin ligase gene family in plants: regulation by degradation. Current Genomics 7:509-522.   DOI   ScienceOn
13 Miura K, Rus A, Sharkhuu A, Yokoi S, Karthikeyan AS, Raghothama KG, Baek D, Koo YD, Jin JB, Bressan RA, Yun DJ, Hasegawa PM. 2005. The Arabidopsis SUMO E3 ligase SIZ1 controls phosphate deficiency responses. Proceedings of the National Academy of Sciences of the United States of America 102:7760-7765.   DOI   ScienceOn
14 Miura K, Jin JB, Lee J, Yoo CY, Stirm V, Miura T, Ashworth EN, Bressan RA, Yun DJ, Hasegawa PM. 2007. SIZ1-mediated sumoylation of ICE1 controls CBF3/DREB1A expression and freezing tolerance in Arabidopsis. Plant Cell 9:1403-1414.
15 Miura K, Lee J, Jin JB, Yoo CY, Miura T, Hasegawa PM. 2009. Sumoylation of ABI5 by the Arabidopsis SUMO E3 ligase SIZ1 negatively regulates abscisic acid signaling. Proceedings of the National Academy of Sciences of the United States of America 106:5418-5423.   DOI   ScienceOn
16 Miura, K., Lee, J., Miura, T., Hasegawa, P. M. SIZ1 controls cell growth and plant development in Arabidopsis through salicylic acid. Plant and Cell Physiology 51:103-113 (2010).   DOI   ScienceOn
17 Schrader EK, Harstad KG, Matouschek A. 2009. Targeting proteins for degradation. Nature Chemical Biology 5:815-822.   DOI
18 Okada S, Nagabuchi M, Takamura Y, Nakagawa T, Shinmyozu K, Nakayama J, Tanaka K. 2009. Reconstitution of Arabidopsis thaliana SUMO pathways in E. coli: functional evaluation of SUMO machinery proteins and mapping of SUMOylation sites by mass spectrometry. Plant Cell and Physiology 50:1049-1061.   DOI   ScienceOn
19 Prudden J, Pebernard S, Raffa G, Slavin DA, Perry JJ, Tainer JA, McGowan CH, Boddy MN. 2007. SUMOtargeted ubiquitin ligases in genome stability. EMBO Journal 26:4089-4101.   DOI   ScienceOn
20 Saracco SA, Hansson M, Scalf M, Walker JM, Smith LM, Vierstra RD. 2009. Tandem affinity purification and mass spectrometric analysis of ubiquitylated proteins in Arabidopsis. Plant Journal 59:344-358.   DOI   ScienceOn
21 Sun H, Leverson JD, Hunter T. 2007. Conserved function of RNF4 family proteins in eukaryotes: targeting a ubiquitin ligase to SUMOylated proteins. EMBO Journal 26:4102-4112.   DOI   ScienceOn
22 Uzunova K, Gottsche K, Miteva M, Weisshaar SR, Glanemann C, Schnellhardt M, Niessen M, Scheel H, Hofmann K, Johnson ES, Praefcke GJ, Dohmen RJ. 2007. Ubiquitin-dependent proteolytic control of SUMO conjugates. Journal of Biological Chemistry 282:34167-75.   DOI
23 Wilkinson KA, Henley JM. 2010. Mechanisms, regulation and consequences of protein SUMOylation. Biochemical Journal 428:133-145.   DOI   ScienceOn