영상처리 기술을 이용한 치과용 로봇 조명장치의 개발

Development of Dental Light Robotic System using Image Processing Technology

  • 문현일 (청도군 보건소 치과) ;
  • 김명남 (경북대학교 의학전문대학원 의공학과) ;
  • 이규복 (경북대학교 치의학전문대학원 치과보철과)
  • Moon, Hyun-Il (Cheongdo Health Center Dental Clinic) ;
  • Kim, Myoung-Nam (Department of Biomedical Engineering, School of Medicine, Kyungpook National University) ;
  • Lee, Kyu-Bok (Department of Prosthodontics, School of Dentistry, Kyungpook National University)
  • 투고 : 2010.08.23
  • 심사 : 2010.09.25
  • 발행 : 2010.09.30

초록

본 연구에서는 영상처리 기술을 활용한 치과용 로봇 조명장치를 개발하여 그 정확도를 측정하여 보고자 한다. 본 연구를 통해 개발된 치과용 로봇 조명장치는 환자의 얼굴을 카메라로 인식을 하여 구강의 위치를 찾아 로봇이 움직여 라이트를 비추게 하는 것으로서 모션 제어 부, 라이트 제어 부, 영상 처리부로 구성되어 있다. 카메라로 영상을 획득 후 동작변화 영상을 추출 한 다음 아다부스트 알고리즘(Adaboost algorithm)을 통해, 얼굴 검출에 필요한 특징을 추출하여 실시간으로 얼굴 영역을 검출하도록 하였다. 영상처리를 통한 환자 구강의 추출 실험 시 정면영상에서 높은 얼굴인식률을 나타냈고 얼굴영역이 인식이 되면, 안정적인 라이트 로봇 암(Light robot arm)의 제어가 가능했다.

Robot-assisted illuminating equipment based on image-processing technology was developed and then its accuracy was measured. The current system was designed to detect facial appearance using a camera and to illuminate it using a robot-assisted system. It was composed of a motion control component, a light control component and an image-processing component. Images were captured with a camera and following their acquisition the images that showed motion change were extracted in accordance with the Adaboost algorithm. Following the detection experiment for the oral cavity of patients based on image-processing technology, a higher degree of the facial recognition was obtained from the frontal view and the light robot arm was stably controlled.

키워드

참고문헌

  1. A. R. Lanfranco. Robotic Surgery: A Current Perspective. Ann Surg. 2004;239:14-21 https://doi.org/10.1097/01.sla.0000103020.19595.7d
  2. Q. Du et al. Research on Control System of Radio Frequency Ablation Surgical Robot. in Proc. IEEE International Conference on Robotics and Biomimetics. 2006:1287-1292.
  3. B. M. Smithers et al. Comparison of the outcomes between open and minimally invasive esophagectomy. Ann Surg. 2007;245:232-240. https://doi.org/10.1097/01.sla.0000225093.58071.c6
  4. W.L. David et al. Computer-based laparoscopic and robotic surgical simulators: performance characteristics and perceptions of new users. Surgical endoscopy. 2009;23(1):209-214. https://doi.org/10.1007/s00464-008-9805-3
  5. S. J. Chu, A. Devigus, and A. Mieleszko. Elements affecting color en Fundamentals of color: Shade Matching and comunication in esthetic dentistry. Quintessence Publishing. 2004:20-30.
  6. C. W. Chang et al. Separation of photoelastic principal stresses by analytical evaluation and digital image processing. Journal of Mechanics. 2009;25(1): 19-25. https://doi.org/10.1017/S1727719100003567
  7. H. I. Krebs et al. Robot-Aided Neurorehabilitation: A Robot for Wrist Rehabilitation. Neural Systems and Rehabilitation Engineering. IEEE Trans. Neural Syst. Rehabil. Eng. 2007;15(3):327-335.
  8. W. Hu et al. Semantic-Based Surveillance Video Retrieval, IEEE Trans. Image Process. 2007;16(4):1168-1181.
  9. M. H. Yang et al. Detecting face in images : a survey. Pattern Analysis and Machine Intelligence. IEEE Trans. Pattern Anal. Mach. Intell. 2002;24(1): 34-58. https://doi.org/10.1109/34.982883
  10. G. Yang and T. S. Huang. Human Face Detection in a Complex Background. Pattern Recognition. 1994; 27(1):53-63. https://doi.org/10.1016/0031-3203(94)90017-5
  11. W. U. Haiyuan and Q. CHEN. Detecting Human Face in Color Images. in Proc. IEEE. 1996:2232-2236.
  12. R. Brunelli and T. Poggio. Face Recognition: Features versus Templates. IEEE Trans. Pattern Anal. Mach. Intell. 1993;15:1042-1052. https://doi.org/10.1109/34.254061
  13. S. Avidan. Ensemble Tracking. IEEE Trans. Pattern Anal. Mach. Intell. 2007;29(2):261-271.
  14. T. D. Rikert, M. J. Jones, and P. Viola. A clusterbased statistical model for object detection. In Proc. IEEE Conference on Computer Vision and Pattern Recognition. 1999;2:1046-1053.
  15. B. Heisele et al. A Component-based Framework for Face Detection and Identification. International Journal of Computer Vision. 2007;74:167-181. https://doi.org/10.1007/s11263-006-0006-z
  16. R. L. D. Querioz and K. M. Braun. Color to gray and back: Color embedding into textured gray images. IEEE Trans. Image Process. 2006;15(6):1464-1470.
  17. Z. Wang et al. Image Quality Assessment: From Error Measurement to Structural Similarity. IEEE Trans. Image Process. 2004;13(1):1-14. https://doi.org/10.1109/TIP.2003.819432
  18. K. Chen et al. Feature Selection for Iris Recognition with AdaBoost. In Proc. of the Third international Conference on international information Hiding and Multimedia Signal Processing. 2007;2:411-414.
  19. H. Stokman and T. Gevers. Selection and Fusion of Color Models for Image Feature Detection. IEEE Trans. Pattern Anal. Mach. Intell. 2007;29:371-381.
  20. H. Graf et al. Face analysis for the synthesis of photo-realistic talking heads. In Proc. of the Fourth IEEE International Conf on Automatic Face and Gesture Recognition. 2000.
  21. X. M. Xu and D. Xu. Study of Appearance-based Subspace Face Recognition Algorithms. Application Research of Computers. 2007;24(5):10-12.
  22. H. Schneiderman and T. Kanade. A statistical method for 3d object detection applied to faces and cars. In Proc. IEEE Conference on Computer Vision and Pattern Recognition. 2000:746-751.
  23. A. Khammari et al. Vehicle Detection Combining Gradient Analysis and AdaBoost Classification. IEEE Intelligent Transportation Systems. 2006:66-71.
  24. P. S. Lum et al. MIME robotic device for upper-limb neurorehabilitation in subacute stroke subjects: a follow-up study. J Rehabil Res Dev. 2006;43:631- 642. https://doi.org/10.1682/JRRD.2005.02.0044