Effect of Implant Designs on Insertion Torque and Stress : Three-Dimensional Finite Element Analysis

임플란트 디자인이 식립 회전력과 응력에 미치는 영향에 관한 삼차원 유한요소 분석

  • Kim, Jang-Eung (Department of Prosthodontics, College of Dentistry, Dankook University) ;
  • Choi, Yu-Sung (Department of Prosthodontics, College of Dentistry, Dankook University) ;
  • Lim, Jong-Hwa (Department of Prosthodontics, College of Dentistry, Dankook University) ;
  • Cho, In-Ho (Department of Prosthodontics, College of Dentistry, Dankook University)
  • 김장응 (단국대학교 치과대학 보철학 교실) ;
  • 최유성 (단국대학교 치과대학 보철학 교실) ;
  • 임종화 (단국대학교 치과대학 보철학 교실) ;
  • 조인호 (단국대학교 치과대학 보철학 교실)
  • Received : 2010.01.15
  • Accepted : 2010.06.25
  • Published : 2010.06.30

Abstract

Purpose : To analyze the effect of implant designs on insertion torque and stress by performing a comparative study on von Mises stress, torque and normal force through a three-dimensional finite element analysis. Materials and methods : Models of the screw type implant were used to model the implant as a form placed in the mandibular premolar region applying a three-dimensional finite element method. Screw type implant designs were classified into 4 types of parallel ones and 7 types of tapered ones. Other factors were simulated to represent clinical environment. Results : In parallel implant designs, higher and wider threads resulted in higher insertion torques and higher stress distributions. In tapered implant designs, changes in the taper led to remarkable differences in the insertion torques. It was difficult to determine a certain tendency of stress distribution around the implants since the stress level was too high around them. In tapered implant designs, smaller implants demonstrated lower insertion torques than the original type and were relatively less dependent on the degree of taper. Tapered implants showed higher insertion torques and higher stress distributions than parallel implants. Conclusion : According to this study, although the tapered implant demonstrated a higher insertion torque than the parallel implant, stress tended to be concentrated in the entire fixture of the tapered implant due to the inefficient stress distribution.

본 연구에서는 임플란트 디자인이 주입회전력과 주변 응력에 미치는 영향을 알아보고자 삼차원 유한 요소 분석을 이용하여 유효 응력과 모멘트 그리고 축력을 측정, 비교 조사하였다. 나사형 임플란트 매식체의 디자인을 4종의 평행형과 7종의 근첨형으로 구분하였고 하악골 소구치 부위에 식립한 것으로 가정하여 유한 요소 모델을 제작하였다. 각각의 임플란트가 식립될 때 주변부에 발생하는 응력을 분석하였으며 그 결과 근첨형 임플란트가 평행형 임플란트에 비해 높은 식립 회전력을 보여 초기 고정력이 우수할 것으로 예상되었으나 응력 분산 측면에 있어서는 효율성이 낮은 양상을 나타내었다. 근첨형 임플란트에 비해 평행형 임플란트가 나사산의 높이에 따른 영향을 크게 받는 것으로 나타났으며 근첨형 임플란트는 임플란트 몸체의 경사도가 증가함에 따라 높은 응력이 발생되는 것이 관찰되었다.

Keywords

References

  1. Weinstein AM. Klawitter JJ, Anand SC, Schuessler R. Stress analysis of porous rooted dental implants. J Dent Res 1976;55:772-7. https://doi.org/10.1177/00220345760550051001
  2. Petrie CS, Williams JL. Comparative evaluation of implant design, influence of diameter, length and taper on strains in the alveolar crest. Clin Oral Impl Res 2005;16:486-94. https://doi.org/10.1111/j.1600-0501.2005.01132.x
  3. Kitamura E, Stegaroiu R, Nomura S, Miyakawa O. Biomechanical aspect of marginal bone resorption around osseointegrated implants: Considerations based on a three-dimensional finite element analysis. Clin Oral Impl Res 2004;15:401-12. https://doi.org/10.1111/j.1600-0501.2004.01022.x
  4. Satoh T, Maeda Y, Komiyama Y. Biomechanical rationale for intentionally inclined implants in the posterior mandible using 3D finite element analysis. Int J Oral Maxillofac Implants 2005;20:533-9.
  5. Tricio J, Steenberghe D, Rogenberg D, Duchateau L. Implant stability related to insertion torgue force and bone density : An in vitro study. J Prosthet Dent 1995;74:608-12. https://doi.org/10.1016/S0022-3913(05)80313-0
  6. Meredith N. Assessment of implant stability as a prognotic determinant. Int J Prothodont 1998;11: 491-501.
  7. Al-Nawas B, Wagner W, Grötz KA. Insertion torque and resonance frequency analysis of dental implant systems in an animal model with loaded implants. Int J Oral Maxillofac Implants 2006;21:726-32.
  8. Sakoh J, Wahlmann U, Stender E, Al-Nawas B, Wagner W. Primary stability of conical implant and a hybrid, cylindric screw-type implant in vitro. Int J Oral Maxillofac Implants 2006;21:560-6.
  9. Olsson M, Urde G, Andersen JB, Sennerby L. Early loading of maxillary fixed cross-arch dental prostheses supported by six or eight oxidized titanium implnts : Results after 1 year of loading, case series. Clin Implant Dent Relat Res 2003;5 (suppl 1):81-7.
  10. Tada S, Stegaroiu R, Kitamura E, Miyakawa O, Kusakari H. Influence of implant design and bone quality on stress/strain distribution in bone around implants : A 3-dimensional finite element analysis. Int J Oral Maxillofac Implants 2003;18:357-68.
  11. French AA, Bowles CQ, Parham PL. Comparison of osseointegrated implants. Int J Perio & Res 1989;9: 221-9.
  12. Choi YH, Cho IH. Photoelastic analysis of stresses induced by various superstructures on the endosteal implant. J Korean Acad Prosthodont 1993;31:679-86.
  13. McCartney JW. Motion vector analysis of an abutment for a distal extension removable partial dentures : A pilot study. J Prosthet Dent 1980;43: 15-8. https://doi.org/10.1016/0022-3913(80)90346-7
  14. Dirtoft B, Jasson JF, Abramson NH. Using holography for measurement of in vivo deformation in a complete maxillary denture. J Prosthet Dent 1985;54:843-5. https://doi.org/10.1016/0022-3913(85)90484-6
  15. Siegele D, Soletesz J. Numerical investigations of the jaw bone. Int J Oral Maxillofac Implants1989;4:333-40.
  16. Geng JP, Tan KBC, Lui GR. Application of finite element analysis in implant dentistry : A review of the literature. J Prosthet Dent 2001;85:585-98. https://doi.org/10.1067/mpr.2001.115251
  17. Himmlova L, Dostalova T. Kacovsky A, Konvičkova S. Influence of implant length and diameter on stress distribution : A finite element analysis. J Prosthet Dent 2004;91:20-5. https://doi.org/10.1016/j.prosdent.2003.08.008
  18. Baggi L, Cappelloni I, Girolamo MD, Maceri F, Vairo G. The Influence on implant diameter and length on stress distribution of osseointegrated implants related to crestal bone geography : A three-dimensional finite element analysis. J Prosthet Dent 2008;100:422-31. https://doi.org/10.1016/S0022-3913(08)60259-0
  19. Bidez MW, Misch CE. Force transfer in implant dentistry : Original concepts and principles. J Oral Implantol 1992;18:264-74.
  20. Bidez MW, Misch CE. Issue in bone mechanics related to oral implants. Implant Dent 1992;1:289-94. https://doi.org/10.1097/00008505-199200140-00011
  21. Heung HL, Chang CH, Hsu JT, Fallgatter AM, Ko CC. Comparison of implant body designs and threaded designs of dental implants : A 3-dimensional finite element analysis. Int J Oral Maxillofac Implants 2007;22:551-62.
  22. Sutpideler M, Eckert SE, Zobitz M, An KN. Finite element analysis of prosthesis height, angle of force application, and implant offset on supporting bone. Int J Oral Maxillofac Implants 2004;19:819-25.
  23. Williams KR, Watson CJ, Scott J, Gregory M, Simobab D. Finite element analysis of fixed prostheses attached to osseointegrated implants. Quintessence Int 1990;21:563-70.
  24. Turkyilmaz I, Aksoy U, McGrumphy EA. Two alternative surgical techniques for enhancing primary implant stability in the posterior maxilla : A clinical study including Bone density, Insertion torque, and resonance frequency analysis deta. Clin Implant Dent Relat Res 2008;10:231-7.
  25. Meijer HA, Kuiper JH, Starmans FJM, Bosman F. Stress distribution around dental implants : Influence of superstructure length of implants, and height of mandible. J Prosthet Dent 1992;68:96-102. https://doi.org/10.1016/0022-3913(92)90293-J
  26. Rieger MR, Mayberry M, Brose MO. Finite element analysis of six endosseous implant. J Prosthet Dent 1990;63:671-6. https://doi.org/10.1016/0022-3913(90)90325-7
  27. Rieger MR, Fareed K, Adams WK, Tanquist RA. Bone stress distribution for three endosseous implants. J Prosthet Dent 1989;61:223-8. https://doi.org/10.1016/0022-3913(89)90379-X
  28. Rieger MR, Adams WK, Kinzel GL, Brose MO. Alternative materials for three endosseous implant. J Prosthet Dent 1989;61:717-22. https://doi.org/10.1016/S0022-3913(89)80049-6
  29. Kinni ME, Hokama S, Caputo A. Force transfer by osseointegration implant device. Int J Oral Maxillofac Implants 1987;2:11-4.
  30. Johansson P, Strid KG. Assessment of bone quality from cutting resistance during implant surgery. Int J Oral Maxillofac Implants 1994;9:279-88.
  31. O'Sullivan D, Sennerby L, Jagger D, Meredith N. A comparision of two methods of enhancing implant primary stability. Clin Implant Dent Relat Res 2004;6:48-57. https://doi.org/10.1111/j.1708-8208.2004.tb00027.x
  32. Skalak R. Biomechanical considerations in osseointegrated prostheses. J Prosthet Dent 1983;49:843-8. https://doi.org/10.1016/0022-3913(83)90361-X
  33. Kim YJ, Cho IH. On the bone tissue reaction to implants with different surface treatment methods. J Korean Acad Prosthodont 2007;45:71-84.
  34. Yang SW, Lim HS, Cho IH. The effect of different surface treatment on the osseointegration and stability of implants. J Korean Acad Prosthodont 2006;44: 606-16.
  35. O'Sullivan D, Sennerby L, Meredith N. Influence of implant taper on the primary and secondary stability of osseointegrated titanium implants. Clin Implant Dent Relat Res 2004;15:474-80.