합성가스에서 경질올레핀 제조를 위한 피셔-트롭시 반응용 구형 철-알루미나 촉매 합성

Preparation of Fe/$Al_2O_3$ Granules for Conversion of Syngas to Light Olefins by Fischer-Tropsch Reaction

  • 이동준 (한국과학기술연구원 청정에너지센터) ;
  • 정광덕 (한국과학기술연구원 청정에너지센터) ;
  • 유계상 (서울산업대학교 화학공학과)
  • Lee, Dong-Joon (Clean Energy Center, Korea Institute of Science and Technology) ;
  • Jung, Kwang-Deog (Clean Energy Center, Korea Institute of Science and Technology) ;
  • Yoo, Kye-Sang (Department of Chemical Engineering, Seoul National University of Technology)
  • 투고 : 2010.02.12
  • 심사 : 2010.03.02
  • 발행 : 2010.06.10

초록

합성가스에서 경질 올레핀을 합성하는 Fishcer-Tropsh 반응을 위하여 다양한 조성을 가지는 구형 철-알루미늄 촉매를 졸-겔 오일법으로 합성하였다. 합성된 구형 촉매를 이용하여 다양한 특성분석 및 반응성능을 측정하였다. 촉매의 비표 면적은 철의 비율이 증가할수록 감소하였고, CO 전환율은 Al/Fe비가 1.5인 촉매가 가장 우수하였다. 올레핀 선택도는 Al/Fe비에 영향을 받지 않았다. 함침법을 이용하여 K를 첨가한 경우 반응특성에 영향을 주었다. 첨가한 K의 농도가 증가할수록 초기 CO 전환율과 올레핀 선택도는 향상됐지만 촉매의 활성도는 급격히 감소하였다.

Fe/$Al_2O_3$ granules with various compositions were prepared by combining sol-gel with oil drop method for Fishcer-Tropsh reaction to produce light olefin from synthesis gas. The granules was characterized and employed as a catalyst in the reaction. The surface area of granules was decreased with increasing Fe concentration. Especially, granule with 1.5 of Al/Fe ratios showed the highest CO conversion. However, the olefin selectivity was hardly affected by Al/Fe ratio. K concentration of granule gave a significant effect on catalytic performance. Initial CO conversion and olefin selectivity were increased with K concentration. However, the catalyst with higher K concentration was deactivated rapidly.

키워드

참고문헌

  1. Y. Yang, H. W. Xiang, Y. Y. Xu, L. Bai, and Y. W. Li, Appl. Catal. A: Gen., 266, 181 (2004). https://doi.org/10.1016/j.apcata.2004.02.018
  2. C. H. Zhang, Y. Yang, Z. C. Tao, T. Z. Li, H. J. Wan, H. W. Xiang, and Y. W. Li, Acta Phys.-Chim. Sin., 22, 1310 (2006). https://doi.org/10.1016/S1872-1508(06)60064-8
  3. M. E. Dry, Appl. Catal. A: Gen., 138, 319 (1996). https://doi.org/10.1016/0926-860X(95)00306-1
  4. H. Dlamini, T. Motjope, G. Joorst, and M. Mdleleni, Catal. Lett., 78, 201 (2002). https://doi.org/10.1023/A:1014953201451
  5. Y. Yang, H. W. Xiang, L. Tian, H. Wang, C. H. Zhang, Z. C. Tao, Y. Y. Xu, B. Zhong, and Y. W. Li, Appl. Catal. A: Gen., 284, 105 (2005). https://doi.org/10.1016/j.apcata.2005.01.025
  6. D. G. Miller and M. Moskovits, J. Phys. Chem., 92, 6081 (1988). https://doi.org/10.1021/j100332a047
  7. L. Bai, H. W. Xiang, Y. W. Li, Z. Y. Han, and B. Zhong, Fuel, 81, 1577 (2002). https://doi.org/10.1016/S0016-2361(02)00089-3
  8. W. Ma, Y. Ding, V. H. Carreto, V. Guez, and D. B. Bukur, Appl. Catal. A: Gen., 268, 99 (2004). https://doi.org/10.1016/j.apcata.2004.03.024
  9. D. S. Kalakkad, M. D. Shroff, S. Kohler, N. Jackson, and A. K. Datye, Appl. Catal. A: Gen., 133, 335 (1995). https://doi.org/10.1016/0926-860X(95)00200-6
  10. R. Zhao, J. G. Goodwin Jr., K. Jothimurugesan, S. K. Gangwal, and J. J. Spivey, Ind. Eng. Chem. Res., 40, 1065 (2001). https://doi.org/10.1021/ie000644f
  11. R. Zhao, K. Sudsakorn, J. G. Goodwin, K. Jothimurugesan, S. K. Gangwal, and J. J. Spivey, Catal. Today, 71, 319 (2002). https://doi.org/10.1016/S0920-5861(01)00458-8
  12. K. Sudsakorn, J. G. Goodwin Jr., K. Jothimurugesan, and A. A. Adeyiga, Ind. Eng. Chem. Res., 40, 4778 (2001). https://doi.org/10.1021/ie0101442
  13. K. S. Yoo, D. Lee, and K. D. Jung, Trans. of Korean Hydrogen and New Energy Society, 19, 545 (2008).