기공성 Cu-ZnO 복합 구형 산화물의 합성 및 CO 산화반응 특성

Synthesis of Porous Cu-ZnO Composite Sphere and CO Oxidation Property

  • 박중남 (성균관대학교 화학과, 에너지과학과, 성균나노과학기술원) ;
  • 황성희 (성균관대학교 화학과, 에너지과학과, 성균나노과학기술원) ;
  • 김명실 (성균관대학교 화학과, 에너지과학과, 성균나노과학기술원) ;
  • 손정국 (성균관대학교 화학과, 에너지과학과, 성균나노과학기술원) ;
  • 권순상 (성균관대학교 화학과, 에너지과학과, 성균나노과학기술원) ;
  • 부진효 (성균관대학교 화학과, 에너지과학과, 성균나노과학기술원) ;
  • 김지만 (성균관대학교 화학과, 에너지과학과, 성균나노과학기술원)
  • Park, Jung-Nam (Department of Chemistry, BK21 School of Chemical Materials Science, Department of Energy Science and SKKU Advanced Institute of Nanotechnology, Sungkyunkwan University) ;
  • Hwang, Seong-Hee (Department of Chemistry, BK21 School of Chemical Materials Science, Department of Energy Science and SKKU Advanced Institute of Nanotechnology, Sungkyunkwan University) ;
  • Jin, Mingshi (Department of Chemistry, BK21 School of Chemical Materials Science, Department of Energy Science and SKKU Advanced Institute of Nanotechnology, Sungkyunkwan University) ;
  • Shon, Jeong-Kuk (Department of Chemistry, BK21 School of Chemical Materials Science, Department of Energy Science and SKKU Advanced Institute of Nanotechnology, Sungkyunkwan University) ;
  • Kwon, Sun-Sang (Department of Chemistry, BK21 School of Chemical Materials Science, Department of Energy Science and SKKU Advanced Institute of Nanotechnology, Sungkyunkwan University) ;
  • Boo, Jin-Hyo (Department of Chemistry, BK21 School of Chemical Materials Science, Department of Energy Science and SKKU Advanced Institute of Nanotechnology, Sungkyunkwan University) ;
  • Kim, Ji-Man (Department of Chemistry, BK21 School of Chemical Materials Science, Department of Energy Science and SKKU Advanced Institute of Nanotechnology, Sungkyunkwan University)
  • 투고 : 2010.02.11
  • 심사 : 2010.03.10
  • 발행 : 2010.06.10

초록

본 연구에서는 다이에틸렌글리콜 용매 상에서 공침법을 이용하여 기공성 아연 구형 산화물과 구리-아연 복합 산화물을 합성하였다. 합성된 물질들의 물리화학적 특성은 전자현미경, X-선 회절분석, $N_2$ 흡착, $H_2$-TPR 방법을 통하여 분석되었고, 다양한 Cu 함량(0, 6.6, 21.3 36.4, 54.6, 77.8 wt%)을 포함한 Cu-ZnO 복합 산화물을 고정층 반응 장치에서 일산화탄소 산화 반응성을 고찰하였다. 합성된 산화물 중에서 Cu 함량이 증가할수록 Cu-ZnO의 비표면적과 미세 기공 부피는 감소하였으며, Cu (36.4 wt%)-ZnO이 가장 좋은 일산화탄소 산화 반응성을 나타내었다.

In this study, porous ZnO sphere and Cu-ZnO composite were synthesized by coprecipitation method in diethylene glycol solvent. The physicochemical properties of as-prepared composite materials were characterized by SEM, XRD, $N_2$-sorption and $H_2$-TPR. A series of porous Cu-ZnO with different Cu contents (0, 6.6, 21.3, 36.4, 54.6, 77.8 wt%) was investigated for CO oxidation activity in a fixed bed reactor system. With increasing Cu content in Cu-ZnO the surface area and micropore volume of Cu-ZnO are decreased and Cu (36.4 wt%)-ZnO shows higher activity for CO oxidation compared to the others.

키워드

참고문헌

  1. H. J. Park, S. H. Park, J.-H. Yim, J. M. Sohn, and Y.-K. Park, J. Korean Ind. Eng. Chem., 20, 1 (2009).
  2. S. J. Park and Y. S. Park, J. Korean Ind. Eng. Chem., 19, 624 (2008).
  3. S.-J. Park, M.-H. Cho, and S.-H. Kwon, J. Korean Ind. Eng. Chem., 16, 737 (2005).
  4. Y. Ren, Z. Ma, L. Qian, S. Dai, H. He, and P. G. Bruce, Catal. Lett., 131, 146 (2009). https://doi.org/10.1007/s10562-009-9931-0
  5. P. Djinovic, J. Batista, J. Levec, and A. Pintar, Appl. Catal. A: Gen., 364, 156 (2009). https://doi.org/10.1016/j.apcata.2009.05.044
  6. C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, and J. S. Beck, Nature, 359, 710 (1992). https://doi.org/10.1038/359710a0
  7. B. T. Holland, C. F. Blanford, T. Do, and A. Stein, Chem. Mater., 11, 795 (1999). https://doi.org/10.1021/cm980666g
  8. D. Wang, T. Xie, Q. Peng, and Y. Li, J. Am. Chem. Soc., 130, 4016 (2008). https://doi.org/10.1021/ja710004h
  9. H. Tuysuz, M. Comotti, and F. Schuth, Chem. Commun., 4022 (2008).
  10. C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo, and D. Wang, Nano Lett., 7, 1003 (2007). https://doi.org/10.1021/nl070111x
  11. H.-W. Ra, K.-S. Choi, J.-H. Kim, Y.-B. Hahn, and Y.-H. Im, Small, 4, 1105 (2008). https://doi.org/10.1002/smll.200700922
  12. B. Lucas, A. El Amrani, A. Moliton, and M. Dilhan, Superlatt. Microstruct., 42, 357 (2007). https://doi.org/10.1016/j.spmi.2007.04.032
  13. A. Umar, A. Al-Hajry, Y. B. Hahn, and D. H. Kim, Electrochim. Acta, 54, 5358 (2009). https://doi.org/10.1016/j.electacta.2009.04.015
  14. R. G. S. Pala, W. Tang, M. M. Sushchikh, J.-N. Park, A. J. Forman, G. Wu, A. Kleiman -Shwarsctein, J. P. Zhang, E. W. McFarland, and H. Metiu, J. Catal., 266, 50 (2009). https://doi.org/10.1016/j.jcat.2009.05.011
  15. R. Kaur, A. V. Singh, K. Sehrawat, N. C. Mehra, and R. M. Mehra, J. Non-Crystal. Solids, 352, 2565 (2006). https://doi.org/10.1016/j.jnoncrysol.2006.01.090
  16. N. Uekawa, S. Iahii, T. Kojima, and K. Kakegawa, Mater. Lett., 61, 1729 (2007). https://doi.org/10.1016/j.matlet.2006.07.164
  17. S. Cho, S.-H. Jung, and K.-H. Lee, J. Phys. Chem. C, 112, 12769 (2008). https://doi.org/10.1021/jp803783s
  18. D. Jezequel, J. Guenot, N. Jouini, and F. Fievet, J. Mater. Res., 10, 77 (1995). https://doi.org/10.1557/JMR.1995.0077
  19. F. Xu, P. Zhang, A. Navrotsky, Z.-Y. Yuan, T.-Z. Ren, M. Halasa, and B.-L. Su, Chem. Mater., 19, 5680 (2007). https://doi.org/10.1021/cm071190g
  20. G. Xiong, L. Luo, C. Li, and X. Yang, Energ. Fuel., 23, 1342 (2009). https://doi.org/10.1021/ef8008376
  21. S. Kaluza, M. K. Schroter, R. N. d'Alnoncourt, T. Reinecke, and M. Muhler, Adv. Funct. Mater., 18, 3670 (2008). https://doi.org/10.1002/adfm.200800457
  22. Q. Sun, Natural Gas Conversion Vii, X. Bao, and Y. Xu, 147, 397 Elsevier Science Bv, Amsterdam (2004).
  23. T. Shishido, M. Yamamoto, D. Li, Y. Tian, H. Morioka, M. Honda, T. Sano, and K. Takehira, Appl. Catal. A: Gen., 303, 62 (2006). https://doi.org/10.1016/j.apcata.2006.01.031
  24. L.-C. Wang, Y.-M. Liu, M. Chen, Y. Cao, H.-Y. He, G.-S. Wu, W.-L. Dai, and K.-N. Fan, J. Catal., 246, 193 (2007). https://doi.org/10.1016/j.jcat.2006.12.006
  25. J. Bao, Z. Liu, Y. Zhang, and N. Tsubaki, Catal. Commun., 9, 913 (2008). https://doi.org/10.1016/j.catcom.2007.09.034
  26. C.-S. Chen, J.-H. You, J.-H. Lin, C.-R. Chen, and K.-M. Lin, Catal. Commun., 9, 1230 (2008). https://doi.org/10.1016/j.catcom.2007.11.007
  27. U. R. Pillai and S. Deevi, Appl. Catal. B: Environ., 65, 110 (2006). https://doi.org/10.1016/j.apcatb.2005.12.020