정상망막과 변성망막에서 전압자극 파라미터 변화에 따른 망막신경절세포의 반응 비교

Comparison of Retinal Ganglion Cell Responses to Different Voltage Stimulation Parameters in Normal and rd1 Mouse Retina

  • 예장희 (충북대학교 의과대학 생리학교실) ;
  • 류상백 (연세대학교 보건과학대학 의공학과 신경공학연구실) ;
  • 김경환 (연세대학교 보건과학대학 의공학과 신경공학연구실) ;
  • 구용숙 (충북대학교 의과대학 생리학교실)
  • Ye, Jang-Hee (Department of Physiology, Chungbuk National University School of Medicine) ;
  • Ryu, Sang-Baek (Department of Biomedical Engineering, College of Health Science, Yonsei University) ;
  • Kim, Kyung-Hwan (Department of Biomedical Engineering, College of Health Science, Yonsei University) ;
  • Goo, Yong-Sook (Department of Physiology, Chungbuk National University School of Medicine)
  • 투고 : 2010.04.14
  • 심사 : 2010.04.26
  • 발행 : 2010.06.30

초록

색소성망막염(retinitis pigmentosa: RP)이나 연령관련 황반변성(age-related macular degeneration: AMD)과 같은 망막질환으로 인해 실명한 환자를 위해 인공시각장치가 개발되고 있다. 인공시각장치의 동작원리는 전기자극을 주어 신경세포의 활동도를 조절하는 것이므로 시각정보를 제대로 인코딩하기 위해 최적의 전기자극을 인가하는 것은 인공시각장치의 실용화를 위해 매우 중요한 요소이다. 그러므로 본 연구에서는 전압자극의 크기와 자극시간을 변화시켜 가면서 정상망막과 변성망막에 인가한 후 자극에 의해 유발된 망막신경절세포 반응을 분석하고 역치전하밀도를 비교함으로써 최적의 전기자극 조건을 찾아보고자 하였다. 이를 위하여 정상마우스와 rd1 마우스의 망막을 in vitro 상태로 분리한 후 망막의 신경절세포층이 전극을 향하여 부착되도록 한 후 망막신호를 기록하였다. rd1 마우스에서 얻은 변성망막의 망막신경절세포에서도 전압펄스를 인가시 정상망막의 망막신경절세포처럼 전압자극의 크기와 자극시간 변조에 대하여 반응하였다. 그러나 정상망막과 변성망막에서 망막신경절세포 반응의 시간적 패턴은 매우 달랐다: 정상망막의 망막신경절세포 반응은 전기자극 후 약 100 ms 내에서 1개의 피크만 나타나는 반면, 변성망막에서는 이보다 긴 400 ms 구간에서 약 10 Hz의 진동리듬을 가진 다수의 피크(~4개)들이 나타나는 것을 확인하였다. 또한 변성망막에서 망막신경절세포의 반응을 유발하기 위한 역치 전하밀도가 정상망막에서 보다 크게 상승하였다: 자극세기를 변화시켰을 때 정상망막의 역치 전하밀도는 $37.23{\sim}61.65\;{\mu}C/cm^2$, rd1 마우스에서는 $70.50{\sim}99.87\;{\mu}C/cm^2$로 2배가량 높은 것을 확인하였다. 자극시간을 변화시켰을 때 정상망막의 역치 전하밀도는 $22.69{\sim}37.57\;{\mu}C/cm^2$, rd1 마우스에서는 $120.5{\sim}170.6\;{\mu}C/cm^2$로 5배가량 높은 것을 확인하였다.

Retinal prostheses are being developed to restore vision for the blind with retinal diseases such as retinitis pigmentosa (RP) or age-related macular degeneration (AMD). Since retinal prostheses depend upon electrical stimulation to control neural activity, optimal stimulation parameters for successful encoding of visual information are one of the most important requirements to enable visual perception. Therefore, in this paper, we focused on retinal ganglion cell (RGC) responses to different voltage stimulation parameters and compared threshold charge densities in normal and rd1 mice. For this purpose, we used in vitro preparation for the retina of normal and rd1 mice on micro-electrode arrays. When the neural network of rd1 mouse retinas is stimulated with voltage-controlled pulses, RGCs in degenerated retina also respond to voltage amplitude or voltage duration modulation as well in wild-type RGCs. But the temporal pattern of RGCs response is very different; in wild-type RGCs, single peak within 100 ms appears while in RGCs in degenerated retina multiple peaks (~4 peaks) with ~10 Hz rhythm within 400 ms appear. The thresholds for electrical activation of RGCs are overall more elevated in rd1 mouse retinas compared to wild-type mouse retinas: The thresholds for activation of RGCs in rd1 mouse retinas were on average two times higher ($70.50{\sim}99.87\;{\mu}C/cm^2$ vs. $37.23{\sim}61.65\;{\mu}C/cm^2$) in the experiment of voltage amplitude modulation and five times higher ($120.5{\sim}170.6\;{\mu}C/cm^2$ vs. $22.69{\sim}37.57\;{\mu}C/cm^2$) in the experiment of voltage duration modulation than those in wild-type mouse retinas. This is compatible with the findings from human studies that the currents required for evoking visual percepts in RP patients is much higher than those needed in healthy individuals. These results will be used as a guideline for optimal stimulation parameters for upcoming Korean-type retinal prosthesis.

키워드

참고문헌

  1. Humayun MS, de Juan Jr E, Baron Y, et al: Morphometric analysis of the extramacular retina from postmortem eyes with retinitis pigmentosa. Invest Ophthalmol Vis Sci 40:143-148 (1999)
  2. Medeiros NE, Curcio CA: Preservation of ganglion cell layer neurons in age-related macular degeneration. Invest Ophthalmol Vis Sci 42:795-803 (2001)
  3. Acland GM, Aguirre GD, Ray J, et al: Gene therapy restoresvision in a canine model of childhood blindness. Nature Genetics 28:92-95 (2001)
  4. del Cerro M, Gash DM, Rao GN, et al: Retinal transplants into the anterior chamber of the rat eye. Neurosci 21: 707-723 (1987) https://doi.org/10.1016/0306-4522(87)90032-7
  5. Farber DB, Flannery JG, Bowes-Rickman C: The rd mouse story: seventy years of research on an animal model of inherited retinal degeneration. Prog Ret Eye Res 13:31-64 (1994) https://doi.org/10.1016/1350-9462(94)90004-3
  6. Humayun MS, Weiland JD, Fujii GY, et al: Visual perceptionin a blind subject with a chronic microelectronic retinal prosthesis. Vis Res 43:2573-2581 (2003) https://doi.org/10.1016/S0042-6989(03)00457-7
  7. Rizzo III JF, Wyatt J, Lowenstein J, et al: Perceptual efficacy of electrical stimulation of human retina with a micro-electrodearray during short-term surgical trials. Invest Ophthalmol Vis Sci 44:5362-5369 (2003) https://doi.org/10.1167/iovs.02-0817
  8. Bethge P, Traufetter G: Digital encounter. Der Spiegel 52:126-128 (2009)
  9. Lowenstein JI, Montezuma SR, Rizzo III JF: Outer retinal degeneration: An electronic retinal prosthesis as a treatment strategy. Archives of Ophthalmology 122:588-596 (2004)
  10. Tombran-Tink J, Barnstable CJ, Rizzo JF III: Visual prosthesis and ophthalmic devices: new hope in sight. Humana Press, New Jersey (2007), pp. 71-94
  11. Cogan SF: Neural stimulation and recording electrodes. Ann Rev Biomed Eng 10:275-309 (2008) https://doi.org/10.1146/annurev.bioeng.10.061807.160518
  12. Cantrell DR, Troy JB: Extracellular stimulation of mouse retinal ganglion cells with non-rectangular voltage-controlled wave-forms. Conference Proceeding IEEE. Engineering in Medicine and Biology Society. Hilton Minneapolis, 2009, Minnesota, USA, pp. 642-645
  13. O'Hearn TM, Sadda SR, Weiland JD, Maia M, Margalit E, Humayun MS: Electrical stimulation in normal and retinal degeneration (rd1) isolated mouse retina. Vis Res 46:3198-3204 (2006) https://doi.org/10.1016/j.visres.2006.03.031
  14. Jensen RJ, Rizzo JF: Activation of retinal ganglion cells in wild-type and rd1 mice through electrical stimulation of the retinal neural network. Vis Res 48:1562-1568 (2008) https://doi.org/10.1016/j.visres.2008.04.016
  15. Jensen RJ, Rizzo III JF: Activation of ganglion cells in wild-type and rd1 mouse retinas with monophasic and biphasic current pulses. J Neural Eng 6:1-7 (2009)
  16. Stett A, Barth A, Weiss S, Haemmerle H, Zrenner E: Electrical multisite stimulation of isolated chicken retina. Vis Res 40:1785-1795 (2000) https://doi.org/10.1016/S0042-6989(00)00005-5
  17. Ye JH, Goo YS: The slow wave component of retinal activity in rd/rd mouse recorded with a multi-electrode array. Physiol Measurement 28:1079-1088 (2007) https://doi.org/10.1088/0967-3334/28/9/009
  18. Stasheff SF: Emergence of sustained spontaneous hyper activity and temporary preservation of OFF responses in ganglion cells of the retinal degeneration (rd1) mouse. J Neurophysiol 99:1408-1421 (2008) https://doi.org/10.1152/jn.00144.2007
  19. Margolis DJ, Newkirk G, Euler T, Detwiler PB: Functional stability of retinal ganglion cells after degeneration-induced changes in synaptic input. J Neurosci 28:6526-6536 (2008) https://doi.org/10.1523/JNEUROSCI.1533-08.2008
  20. Ryu SB, Ye JH, Lee JS, Goo YS, Kim CH, Kim KH: Electrically-evoked Neural Activities of rd1 Mice Retinal Ganglion Cells by Repetitive Pulse Stimulation. Korean J Physiol Pharmacol 13:443-448 (2009) https://doi.org/10.4196/kjpp.2009.13.6.443
  21. Strettoi E, Porciatti V, Falsini B, Pignatelli V, Rossi C: Morphological and functional abnormalities in the inner retina of the rd/rd mouse. J Neurosci 22:5492-5504 (2002)
  22. Jones BW, Marc RE: Retinal remodeling during retinal degeneration. Exp Eye Res 81:123-137 (2005) https://doi.org/10.1016/j.exer.2005.03.006