DOI QR코드

DOI QR Code

Production of Medium-chain Fatty Acids in Brassica napus by Biotechnology

유채에서의 중쇄지방산 생산

  • Roh, Kyung-Hee (Department of Agricultural Bio-resources, National Academy of Agricultural Science, RDA) ;
  • Lee, Ki-Jong (Department of Agricultural Bio-resources, National Academy of Agricultural Science, RDA) ;
  • Park, Jong-Sug (Department of Agricultural Bio-resources, National Academy of Agricultural Science, RDA) ;
  • Kim, Hyun-Uk (Department of Agricultural Bio-resources, National Academy of Agricultural Science, RDA) ;
  • Lee, Kyeong-Ryeol (Department of Agricultural Bio-resources, National Academy of Agricultural Science, RDA) ;
  • Kim, Jong-Bum (Department of Agricultural Bio-resources, National Academy of Agricultural Science, RDA)
  • 노경희 (농촌진흥청 국립농업과학원 농업생명자원부) ;
  • 이기종 (농촌진흥청 국립농업과학원 농업생명자원부) ;
  • 박종석 (농촌진흥청 국립농업과학원 농업생명자원부) ;
  • 김현욱 (농촌진흥청 국립농업과학원 농업생명자원부) ;
  • 이경렬 (농촌진흥청 국립농업과학원 농업생명자원부) ;
  • 김종범 (농촌진흥청 국립농업과학원 농업생명자원부)
  • Received : 2010.03.25
  • Accepted : 2010.04.28
  • Published : 2010.06.30

Abstract

Medium-chain fatty acids (MCFA) are composed of 8-12 carbon atoms, and are found in coconut, cuphea, and palm kernel oil. MCFA were introduced into clinical nutrition in the 1950s for dietary treatment of malabsorption syndromes because of their rapid absorption and solubility. Recently, MCFA have been applied to Gastrointestinal Permeation Enhancement Technology (GIPET), which is one of the most important parts in drug delivery system in therapeutics. Therefore, to accumulate the MCFA in seed oil of rapeseed, much effort has been conducted by classical or molecular breeding. Laurate can be successfully accumulated up to 60 mol% in the seed oil of rapeseed by the expression of bay thioesterase (Uc FatB1) alone or crossed with a line over-expressing the coconut lysophosphatidic acid acyltransferase (LPAAT) under the control of a napin seed-storage protein promoter. Also, caprylate and caprate were obtained 7 mol% and 29 mol%, respectively, from plants over-expressing of the medium-chain specific thioesterase (Ch FatB2) alone or together with the chain-length-specific condensing enzyme (Ch KASIV). Despite the success of some research in utilizing parallel classical and molecular breeding to produce MCFA, commercially available seed oils have for the most part, not been realized. Recent research in the field of developing MCFA-enriched transgenic plants has established that there is no single rate-limiting step in the production of the target fatty acids. The purpose of this article is to review some of the recent progress in understanding the mechanism and regulation of MCFA production in seed oil of rapeseed.

중쇄지방산은 탄소수가 8-12개로 구성된 포화지방산으로, 장쇄지방산과 달리 인체내 흡수가 빠르고 분해가 빨리 일어나 체지방으로 축적되지 않으면서 열효율이 높아 소화장애환자의 식이요법에 이용된다. 또한 최근 의료분야의 위장침투향상기술에 중쇄지방산 또는 중쇄지방산 유도물질이 사용되며, 이 기술은 최첨단 약물전달시스템 분야에 매우 중요하게 적용되고 있다. 이처럼 효용가치가 높은 중쇄지방산 기름은 아열대작물인 코코넛, 팜 그리고 쿠페아 종자에서 주로 생산되고 있는데, 기름함량이 적고 재배가 까다로워 상업적 이용의 어려움이 있다. 이러한 이유로 재배지역이 넓고 재배가 용이한 유채의 종자에서 중쇄지방산을 생산하고 함량을 증대시키기 위해 그 동안 많은 연구가 수행되어 왔다. 지금까지 밝혀진 중쇄지방산 생산에 관여하는 유전자는 크게 Thioesterase(지방산 사슬 길이), KAS(지방산 사슬 연장), 그리고 Acyltransferase(지방산 전이)로 알려져 있다. 이러한 유전자를 단독 또는 동시에 유채에 형질전환 한후, 여기에서 얻어진 형질전환체 계통을 이용하여 고전육종과 분자육종의 병행을 통해 유채 종자에서 중쇄지방산인 Laurate함량이 60 mol%까지 축적되는 결과를 얻었다. 또한 Caprylate와 Caprate함량은 각 각 8 mol%와 27 mol%까지 축적되었다. 비록 유채 종자에서 일부 중쇄지방산의 생산이 성공적으로 생산되는 결과를 얻었다 할지라도 실제 상업적으로 이용하려면 중쇄지방산 함량이 더 많이 생산되어야 한다. 본 총설에서는 지금까지 유채 종자 내에서 중쇄지방산이 생산된 연구결과를 면밀히 살펴보았고, 향후 연구방향에 대해 간략하게 논하였다.

Keywords

References

  1. Broun P, Boddupalli S, and Somerville C (1998) A bifunctionale oleate 12-hydroxylase: desaturase from Lesquerella fendleri. Plant J 13, 201-210 https://doi.org/10.1046/j.1365-313X.1998.00023.x
  2. Brown AP, Coleman J, Tommy AM, Watson MD, and Slabas AR (1994) Isolation and characterization of a maize cDNA that complements a 1-acyl-sn-glycerol-3-P acyltransferase mutant of Escherichia coli and encodes a protein which has similarities to other acyltransferases. Plant Mol Biol 26, 211-223. https://doi.org/10.1007/BF00039533
  3. Dahlqvist A, Stahl U, Lenman M, Banas A, Lee M, Sandanger L, Ronne H, and Stymne S (2000) Phospholipid:diacylglycerol acyltransferase: An enzyme that catalyzes the acyl-CoAindependent formation of triacylglycerol in yeast and plants. Proc Natl Acad Sci USA 97, 6487-6492. https://doi.org/10.1073/pnas.120067297
  4. Dehesh K (2001) How can we genetically engineer oilseed corps to produce high levels of medium-chain fatty acids? Eur J Lipid Sci Technol 103, 688-697. https://doi.org/10.1002/1438-9312(200110)103:10<688::AID-EJLT688>3.0.CO;2-9
  5. Dehesh K, Edwards P, Fillatti J, Slabaugh M, and Byrne J (1998) KAS IV: a 3-ketoacyl-ACP synthase from Cuphea sp. is a medium chain specific condensing enzyme. Plant J 15, 383- 390. https://doi.org/10.1046/j.1365-313X.1998.00218.x
  6. Dehesh K, Jones A, Knutzon DS, and Voelker TA (1996) production of high levels of 8:0 and 10:0 fatty acids in transgenic canola by overexpression of ChFatB2, a thioesterase cDNA from Cuphea hookeriana. Plant J 9, 167-172. https://doi.org/10.1046/j.1365-313X.1996.09020167.x
  7. Dehesh K, Tai H, Edwards P, Byrne J, and Jaworski JG (2001) Overexprssion of 3-ketoacyl-acyl-carrier protein synthase IIIs in plants reduces the rate of lipid synthesis. Plant Physiol 125, 1103-1114. https://doi.org/10.1104/pp.125.2.1103
  8. Drexler H, Spiekermann P, Meyer A, Domergue F, Zank T, Sperling P, Abbadi A, and Heinz E (2003) Metabolic engineering of fatty acids for breeding of new oilseed crops: strategies, problems and first results. J Plant Physiol 160, 779- 802 https://doi.org/10.1078/0176-1617-01025
  9. Gunstone FD, Harwood JL, and Dijkstra AJ (2007) Fatty acid and lipid structure. In The lipid handbook, (3rd ed.). CRC Press, New York, U.S.A.
  10. Han J, Luhs W, Sonntag K, Zahringer U, Borchardt DS, Wolter FP,Heinz E, and Frentzen M (2001) Functional characterization of $\beta$-ketoacyl-CoA synthase genes from Brassica napus L. Plant Mol Biol 46, 229-239. https://doi.org/10.1023/A:1010665121980
  11. Hirsinger F, and Knowles PF (1984) Morphological and agronomic description of selected Cuphea germplasm. Econ Bot 38, 439- 451. https://doi.org/10.1007/BF02859085
  12. Jones A, Davies HM, and Voelker TA (1995) Palmitoyl-acyl carrier protein (ACP) thioesterase and the evolutionary origin of plant acyl-ACP thioesterases. Plant Cell 7, 359-371. https://doi.org/10.1105/tpc.7.3.359
  13. Kuntzon DS, Hayes TR, Wyrick A, Xiong H, Davies HM, and Voelker TA (1999) Lysophophatidic acid acyltransferase from coconut endosperm mediates the insertion of laurate at the sn- 2 position of triacylglycerols in lauric rapeseed oil and can increase total laurate levels. Plant Physiol 120, 739-746. https://doi.org/10.1104/pp.120.3.739
  14. Lardizabal KD, Mai JT, Wagner NW, Wyrick A, Voelker T, and Hawkins DJ (2001) DGAT2 is a new diacylglycerol acyltransferase gene family: purification, cloning, and expression in insect cells of two polypeptides from Mortierella ramanniana with diacylglycerol acyltransferase activity. J Biol Chem 276, 38862-38869. https://doi.org/10.1074/jbc.M106168200
  15. Leonard TW, Lynch J, Mckenna MJ, and Brayden DJ (2006) Promoting absorption of drugs in humans using medium-chain fatty acid-based solid dosage forms: $GIPET^{TM}$. Expert Opinion on Drug Delivery 3, 685-692. https://doi.org/10.1517/17425247.3.5.685
  16. Liu J-W, Huang Y-S, DeMichele S, Bergana M, Bobik E Jr, Hastilow C, Chuang L-T, Mukerji P, and Knutzon D (2001) Evaluation of the seed oils from a canola plant genetically transformed to produce high levels of $\beta$-linolenic acid. In $\beta$- Linolenic Acid: Recent Advances in Biotechnology and Clinical Applications, Huang Y-S & Ziboh VA (eds.), pp. 61-71. AOCS Press, Champaign, IL, U.S.A
  17. Liu Q, Singh S, and Green A (2000) Genetic modification of cotton seed oil using inverted-repeat gene-silencing techniques. Biochem Soc Trans 28, 927-929. https://doi.org/10.1042/BST0280927
  18. Murphy DJ (2005) Nonfood lipids. In Plant lipids: Biology, Utilization and Manipulation, pp. 103-119. Blackwell Publishing Ltd, Oxford, UK.
  19. Nishida I, Swinhoe R, Slabas AR, and Murata N (1996) Cloning of Brassica napus CTP:phosphocholine cytidylyltransferase cDNAs by complementation in a yeast cct mutant. Plant Mol Biol 31, 205-211. https://doi.org/10.1007/BF00021784
  20. Ståhl U, Carlson AS, Lenman M, Dahlqvist A, Huang B, Banas W, Banas A, and Stymne S (2004) Cloning and functional characterization of phospholipid:diacylglycerol acyltransferase from Arabidopsis. Plant Physiol 135, 1324-1355. https://doi.org/10.1104/pp.104.044354
  21. Stoll C, Lhs W, Zarhloul MK, and Friedt W (2005) Genetic modification of saturated fatty acids in oilseed rape (Brassica napus). Eur J Lipid Sci Technol 107, 244-248. https://doi.org/10.1002/ejlt.200590021
  22. Stoutjesdijk PA, Hurlestone C, Singh SP, and Green A (2000) High-oleic acid Australian Brassica napus and B. juncea varieties produced by co-suppression of endogenous Δ12- desaturases. Biochem Soc Trans 28, 938-940. https://doi.org/10.1042/BST0280938
  23. Takeuchi H, Sekine S, Kojima K, and Aoyama T (2008) The application of medium-chain fatty acids: edible oil with a suppressing effect on body fat accumulation. Asia Pac J Clin Nutr 17, 320-323.
  24. Topfer R, Martini N, and Schell J (1995) Modification of plant lipid synthesis. Science 268, 681-686. https://doi.org/10.1126/science.268.5211.681
  25. Voelker TA, Hayes TR, Cranmer AM, Turner JC, and Davies HM (1996) Genetic engineering of a quantitative trait: metabolic and genetic parameters influencing the accumulation of laurate in rapeseed. The Plant J 9, 229-241. https://doi.org/10.1046/j.1365-313X.1996.09020229.x
  26. Voelker TA, Jones A, Cranmer AM, Davies HM, and Knutzon DS (1997) Broad-range and binary-range acyl-acyl-carrier protein thioesterases suggest an alternative mechanism for mediumchain production in seeds. Plant Physiol 114, 669-677. https://doi.org/10.1104/pp.114.2.669
  27. Voelker TA, Kinney AJ (2001) Variations in the biosynthesis of seed-storage lipids. Annu Rev Plant Physiol Plant Mol Biol 52, 335-361. https://doi.org/10.1146/annurev.arplant.52.1.335
  28. Voelker TA, Worrell AC, Anderson L, Bleibaum J, Fan C, Hawkins DJ, Radke SE, and Davies HM (1992) Fatty acid biosynthesis redirected to medium chains in transgenic oilseed plants. Science 257, 72-74. https://doi.org/10.1126/science.1621095
  29. Wiberg E, Banas A, and Stymne S (1997) Fatty acid distribution and lipid metabolism in developing seeds of laurate-producing rape (Brassica napus L.) Planta 203, 341-348 https://doi.org/10.1007/s004250050200
  30. Wiberg E, Edwards P, Byrne J, Stymme S, and Dehesh K (2000) The distribution of caprylate, caprate and laurate in lipids from developing and mature seeds of transgenic Brassica napus L. Planta 212, 33-40. https://doi.org/10.1007/s004250000361
  31. Zheng Z, Zou J (2001) The initial step of the glycerolipid pathway: identification of glycerol 3-phosphate/dihydroxyacetone phosphate dual substrate acyltransferases in Saccharomyces cerevisiae. J Biol Chem 276, 41710-41716. https://doi.org/10.1074/jbc.M104749200
  32. Zou J, Wei Y, Jako C, Kumar A, Selvaraj G, and Taylor DC (1999) The Arabidopsis thaliana tag1 mutant has a mutation in a diacylglycerol acyltransferase gene. Plant J 19, 645-653. https://doi.org/10.1046/j.1365-313x.1999.00555.x

Cited by

  1. Current research on global GM crops and approval in Korea vol.32, pp.4, 2020, https://doi.org/10.12719/ksia.2020.32.4.396