해저배관의 소성붕괴에 대한 기하학적 형상변화의 효과

Effect of Geometry Variation on Plastic Collapse of Marine Pipeline

  • 백종현 (한국가스공사 연구개발원) ;
  • 김우식 (한국가스공사 연구개발원)
  • 투고 : 2009.12.28
  • 심사 : 2010.08.30
  • 발행 : 2010.08.31

초록

해저배관의 안전성 검토를 위하여 수압에 의한 소성붕괴 저항성을 평가하였다. 본 연구에서는 해저배관에 부가되는 주하중을 수압으로 설정하여 배관의 직경대 두께비와 ovality 변화가 배관의 소성붕괴 변화에 미치는 영향을 유한요소해석을 통하여 평가하였다. 내압은 외압에 의한 소성붕괴 저항성을 향상시켜 소성붕괴 발생 깊이를 증가시켰으며, 동일 ovality에서 local ovality를 갖는 배관은 global ovality 보다 더 깊은 붕괴 깊이를 나타내었으며, 소성붕괴 발생 깊이는 직경대 두께비의 증가 또는 ovality 증가에 따라 감소하였다.

The marine pipelines laid in deep waters were evaluated to verify the resistance on the plastic collapse to heavy ambient external pressure due to hydrostatic pressure. In this study, the plastic collapse behavior of the marine pipe subjected to hydrostatic pressure was evaluated with the ovality and ratio of diameter to thickness in FE analyses. A parametric study was shown that the internal pressure increased the plastic collapse depth by increasing of the resistance to the plastic collapse. It was also shown that the collapse depth of the pipeline having a local ovality was deeper than that of the pipeline having a global ovality. Finally, the plastic collapse depth decreased when either the ratio of diameter to thickness or the ovality increased.

키워드

참고문헌

  1. Vladimir I R and Igor V M, "Interactive Computer Models Aid Deepwater Pipe Line Design", Pipe Line & Gas Industry, 2000, November, 55-58
  2. J-lay Addition, "DP upgrade equips SSCV for ultra-deepwater pipe lay", Pipe Line & Gas Industry, 2000, November, 63-58
  3. Colin M, "Ultra-deepwater development requires technological advances", Pipe Line & Gas Industry, 2000, November, 74-78
  4. Ben C. Gerwick, Construction of marine and offshore structures, CRC Press LLC, (2000)
  5. Bai Y., Igland R. and Moan T., "Tube collapse under combined external pressure, tension and bending", Marine Structures, 10, 389-410, (1997) https://doi.org/10.1016/S0951-8339(97)00003-8
  6. Park T.D. and Kyriakides S., "On the collapse of dented cylinders under external pressure", International Journal of Mechanical Sciences, 38, 557-578, (1996) https://doi.org/10.1016/0020-7403(95)00065-8
  7. Park T.D. and Kyriakides S., "On the performance of integral buckle arrestors for offshore pipelines", International Journal of Mechanical Sciences, 39, 643-669, (1997) https://doi.org/10.1016/S0020-7403(96)00074-4
  8. Haagsma S C., "Collapse resistance of submarine lines studied", Oil & Gas Journal, 1981, Feb 2, 86-95
  9. Huang X, Mihsein M, Kibble K and Hall R, "Collapse strength analysis of casing design using finite element method", Int. J. Pressure Vessels and Piping, 77, 359-367, (2000) https://doi.org/10.1016/S0308-0161(00)00045-4
  10. Andrew P, Martin T, Si H, Murray A and Stephen Booth, "Full-scale impact tests on pipelines", Int. J. Impact Engineering, 32, 1267-1283, (2006) https://doi.org/10.1016/j.ijimpeng.2004.09.003
  11. Macdonald K.A., Cosham A., Alexander C.R. , Hopkins P., "Assessing mechanical damage in offshore pipelines", Engineering Failure Analysis, Vol. 14, 1667-1679, (2007) https://doi.org/10.1016/j.engfailanal.2006.11.074
  12. ABAQUS version 6.8, ABAQUS Inc., Rhode Island, USA (2008)
  13. DNV OS F101 "Submarine Pipeline System", (2007)
  14. "Specification for Line Pipe", API 5L, 43th edition, (2004)
  15. Riks E, "Progress in collapse Analysis", Journal of Pressure Vessel Technology, 109, 33-41, (1987) https://doi.org/10.1115/1.3264853
  16. ASME 31.8 "Gas Transmission and Distribution Piping System", (2004)