Electrochemical Growth of Palladium Nanowire for Highly Sensitive Hydrogen Sensor

고감도 수소센서를 위한 팔라듐 나노선의 전기화학적인 성장

  • Jo, S.Y. (School of Semiconductor and Chemical Engineering and Technology, Chonbuk National University) ;
  • Kang, B.R. (School of Semiconductor and Chemical Engineering and Technology, Chonbuk National University) ;
  • Im, Y.H. (School of Semiconductor and Chemical Engineering and Technology, Chonbuk National University)
  • 조송이 (전북대학교 반도체.화학공학부) ;
  • 강보라 (전북대학교 반도체.화학공학부) ;
  • 임연호 (전북대학교 반도체.화학공학부)
  • Received : 2010.03.18
  • Accepted : 2010.03.31
  • Published : 2010.03.31

Abstract

We present a novel electrochemical method to fabricate a single Pd nanowire based on direct current assisted dielectropheresis (DEP) process between two predefined metal electrodes. The electrochemical methods was investigated as functions of frequency and voltage for optimal growth conditions of Pd nanowire. The synthesized Pd nanowire have a good resistance of $1\;k{\Omega}$, diameters of several hundred nanometers on average and lengths of $8\;{\mu}m$. Finally, the single Pd nanowire was capable of detecting hydrogen in the concentration range from 100 to 2500 ppm with high sensitivity and response time, thus demonstrating its suitability for use as a hydrogen sensor.

본 연구에서는 금속 전극사이에 팔라듐 나노선을 성장시키기 위해 직류와 이중전기영동 방법을 이용한 전기화학적 방법을 제안하였다. 팔라듐 나노선의 최적 성장 조건들을 파악하기 위해 교류의 인가 주파수 및 전압의 영향들이 조사되었다. 합성된 팔라듐 나노선들은 수백 나노미터의 직경과 $8\;{\mu}m$ 길이를 갖고 있으며, $1\;k{\Omega}$의 우수한 전기적 저항 특성을 보였다. 최종적으로 완성된 팔라듐 나노선들은 상온에서 수소 농도 100 ppm에서 2500 ppm의 범위에서 수소검출 평가를 수행하였으며, 수소센서에 적합한 우수한 검출 감도 및 응답시간을 보였다.

Keywords

References

  1. Wu J. J., and Liu S. C., "Low-temperature growth of well-aligned ZnO nanorods by chemical vapor deposition", Adv. Mater., vol. 14(3), 215-218(2002). https://doi.org/10.1002/1521-4095(20020205)14:3<215::AID-ADMA215>3.0.CO;2-J
  2. Favier F., Walter E. C., Zach M. P., Benter T. and Penner R. M., "Hydrogen sensors and switches from electrodeposited palladium mesowire arrays", Science, 293, 2227-2231(2001). https://doi.org/10.1126/science.1063189
  3. Tans S. J., Devoret. M. H., Dai H., Thess A., Smalley R. E., Geerligs L. J., and Dekker C., "Individual singlewall carbon nanotubes as quantum wires", Nature, 386, 474-477(1997). https://doi.org/10.1038/386474a0
  4. Pan Z. W., Dai Z. R., and Wang Z. L., "Nanobelts of semiconducting oxides", Science, 291, 1947-1949(2001). https://doi.org/10.1126/science.1058120
  5. Lu W. and Lieber C. M., "Nanoelectronics from the bottom up", Nature Mater., 6, 841-850(2007). https://doi.org/10.1038/nmat2028
  6. Cui Y., Wei Q., Park H. K., Lieber C. M., "Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species", Science, 293, 1289-1292(2001). https://doi.org/10.1126/science.1062711
  7. Star A., Gabriel J-C. P., Bradley K. and GrUner G., "Electronic detection of specific protein binding using nanotube FET devices", Nano lett., vol. 3(4), 459-463 (2003). https://doi.org/10.1021/nl0340172
  8. Jo S.Y., Kang B. R., Kim J. T., Ra H. W. and Im Y. H., "The synthesis of single PdAu bimetallic nanowire: feasibility study for hydrogen sensing", Nanotechnology, vol. 21, 055604-055608, (2010). https://doi.org/10.1088/0957-4484/21/5/055604