리튬이온이차전지 음극활물질로써 주석을 첨가한 열분해탄소의 합성과 특성평가

Synthesis and Characterization of Tin-Pyrolyzed Carbon Composites as Anode Material for Lithium Ion Secondary Batteries

  • 황윤주 (전북대학교 수소.연료전지공학과(특성화대학원)) ;
  • 박상호 (삼성SDI) ;
  • 김애란 (전북대학교 수소.연료전지공학과(특성화대학원)) ;
  • ;
  • ;
  • 서은경 (전북대학교 반도체.화학공학부) ;
  • 남기석 (전북대학교 수소.연료전지공학과(특성화대학원))
  • Hwang, Yun-Ju (Department of Hydrogen and Fuel Cells Engineering, Specialized Graduate School, Chonbuk National University) ;
  • Park, Sang-Ho (Energy Business Division Development Team, Samsung SDI) ;
  • Kim, Ae-Rhan (Department of Hydrogen and Fuel Cells Engineering, Specialized Graduate School, Chonbuk National University) ;
  • Jisha, M.R. (Department of Hydrogen and Fuel Cells Engineering, Specialized Graduate School, Chonbuk National University) ;
  • Christy, Maria (Division of Semiconductor and Chemical Engineering, Chonbuk National University) ;
  • Suh, Eun-Kyung (Division of Semiconductor and Chemical Engineering, Chonbuk National University) ;
  • Nahm, Kee-Suk (Department of Hydrogen and Fuel Cells Engineering, Specialized Graduate School, Chonbuk National University)
  • 투고 : 2010.03.16
  • 심사 : 2010.03.24
  • 발행 : 2010.03.31

초록

본 연구에서는 바이오매스로 커피원두를 이용하여 합성한 카본재료에 도전재로 주석을 이용하였다. 주석을 첨가하는 방법에 따라 단순 혼합, 화학적인 방법을 이용하여 혼합체를 만들어 시료를 합성하였다. 시료에 대한 XRD를 이용하여 주석과 탄소가 혼합된 구조를 가지고 있음을 확인하였고 SEM을 통한 합성된 시료구입자크기($12{\sim}85\;{\mu}m$)와 형태를 확인하였다. 충 방전 테스트를 실시하여 15사이클에서 카본블랙을 사용했을 때(105 mAh/g)보다 주석을 화학적으로 혼합을 시킨 시료의 경우(191 mAh/g)가 방전용량이 더 높게 나타나는 것을 볼 수 있었고, 주석을 단순 혼합을 실시한 경우에서는 카본블랙과 비슷한 용량(131 mAh/g)을 보였다.

In present work, tin-carbon mixtures by using carbon from pyrolyzed coffee seeds were synthesized. Synthesis methods includes simple mixing and chemical mixing. X-ray diffraction pattern indicated carbon and tin mixture peaks and scanning electron microscope images showed particles size of $12{\sim}85\;{\mu}m$ and shape. Charge discharge test were carried out. Tin-carbon mixture by chemical mixing indicated higher discharge capacity of 191 mAh/g than commercial carbon black(105 mAh/g) for 15cycles. Tin-carbon mixture by simple mixing indicated similar performance to carbon black.

키워드

참고문헌

  1. M. Endo; C. Kim; K. Nishimura; T. Fujino; K. Miyashita. Recent development of carbon materials for Li ion batteries, Carbon, 2000, 38, 183-197. https://doi.org/10.1016/S0008-6223(99)00141-4
  2. Victory V. Avdeev; Alevtina P. Savch enkova; Ludumila A. Monyakina; Irina V. Nikol'sk aya; Alexey V. Khvostov. Intercalation reactions and carbide formation in graphite-lithium system, Journal of Physical Chemistry Solids, 1995, 57, 947-949.
  3. Qingtang Zhang; Gongchan Peng; Guoping Wang; Meizhen Qu; Zuo Long Yu. Effect of mesoporous carbon containing binary conductive additives in lithium ion batteries on the electrochemical performance of the LiCoO2 composite cathodes, Solid State Ionics, 2009, 180, 698-702. https://doi.org/10.1016/j.ssi.2009.03.008
  4. Shintaro Kuroda; Norio Tobori; Mio Sakuraba; Yuichi Sato. Charge-discharge properties of a cathode prepared with ketjen black as the electro-conductive additive in lithium ion batteries, 2003, 119-121, 924-928.
  5. Yun Ju Hwang; Soo Kyung Jeong; Kee Suk Nahm; Jae Sun Shin; A. Manuel Stephan. Pyrolytic carbon derived from coffee shells as anode materials for lithium batteries, 2007, 68, 182-188.
  6. Yun Ju Hwang; Soo Kyung Jeong; Jae Sun Shin; Kee Suk Nahm; A. Manuel Stephan. High capacity disordered carbons obtaind from coconut shells as anode materials for lithium batteries, 2008, 448, 141-147.
  7. Jim Yang Lee; Ruifen Zhang; Zhaolin Liu. Dispersion of Sn and SnO on carbon anodes, 2000, 90, 70-75.
  8. A. Ahmadpour; D. D. Do. The preparation of active carbons from coal by chemical and physical activation, Carbon, 1996, 34, 471-479. https://doi.org/10.1016/0008-6223(95)00204-9
  9. Zhonghua Hu; M. P. Srinivasan; Yaming Ni. Novel activation process for preparing highly microporous and mesoporous activated carbons, Carbon, 2001, 39, 877-886. https://doi.org/10.1016/S0008-6223(00)00198-6
  10. Carlos Moreno-Castilla; Francisco Carrasco-Marin; M.Victoria Lopez-Ramon; Miguel A. Alvarez-Merino. Chemical and physical activation of olive-mill waste water to produce activated carbons, Carbon, 2001, 39, 1415-1420. https://doi.org/10.1016/S0008-6223(00)00268-2
  11. Suna Balci. Thermal decomposition of sepiolite and variations in pore structure with and without acid pre-treatment, Journal of Chemical Technology & Biotechnology, 1996, 66, 72-78. https://doi.org/10.1002/(SICI)1097-4660(199605)66:1<72::AID-JCTB442>3.0.CO;2-T
  12. M.A. Ferro-García; J. Rivera-Utrilla; J. Rodriguez- Gordillo; I. Bautista-Toledo. Adsorption of zinc, cadmium, and copper on activated carbons obtained from agricultural by-products, Carbon, 1988, 26, 363-373. https://doi.org/10.1016/0008-6223(88)90228-X
  13. Tao Zhang; W. R. Mckinnon; J. R. Dahn, Hysteresis during lithium insertion in hydrogen-containing carbons, Journal of electrochemical society, 1996, 143, 2137-2145. https://doi.org/10.1149/1.1836972