Dependence of Analog and Digital Performance on Carrier Direction in Strained-Si PMOSFET

Strained-Si PMOSFET에서 디지털 및 아날로그 성능의 캐리어 방향성에 대한 의존성

  • Han, In-Shik (Department of Electronics Engineering, Chungnam National University) ;
  • Bok, Jung-Deuk (Department of Electronics Engineering, Chungnam National University) ;
  • Kwon, Hyuk-Min (Department of Electronics Engineering, Chungnam National University) ;
  • Park, Sang-Uk (Department of Electronics Engineering, Chungnam National University) ;
  • Jung, Yi-Jung (Department of Electronics Engineering, Chungnam National University) ;
  • Shin, Hong-Sik (Department of Electronics Engineering, Chungnam National University) ;
  • Yang, Seung-Dong (Department of Electronics Engineering, Chungnam National University) ;
  • Lee, Ga-Won (Department of Electronics Engineering, Chungnam National University) ;
  • Lee, Hi-Deok (Department of Electronics Engineering, Chungnam National University)
  • Received : 2010.04.12
  • Accepted : 2010.07.28
  • Published : 2010.08.25

Abstract

In this paper, comparative analysis of digital and analog performances of strained-silicon PMOSFETs with different carrier direction were performed. ID.SAT vs. ID.OFF and output resistance, Rout performances of devices with <100> carrier direction were better than those of <110> direction due to the greater carrier mobility of <100> channel direction. However, on the contrary, NBTI reliability and device matching characteristics of device with <100> carrier direction were worse than those with <110> carrier direction. Therefore, simultaneous consideration of analog and reliability characteristics as well as DC device performance is highly necessary when developing mobility enhancement technology using the different carrier direction for nano-scale CMOSFETs.

본 논문에서는 각각 다른 캐리어 방향성을 가지는 strained-silicon PMOSFET에서 소자의 디지털 및 아날로그 성능을 비교 평가 하였다. 캐리어 방향이 <100>을 갖는 소자의 경우 이동도 향상에 의해서 <110> 방향의 소자 보다 우수한 드레인 구동 전류 및 출력저항 특성을 보이지만, NBTI 신뢰성과 소자의 matching 특성은 반대로 다소 열화 됨을 확인 하였다. 따라서 나노미터급 CMOSFET에서 캐리어 방향성을 이용한 이동도 향상 기술의 적용을 위해서는 DC 성능을 비롯한 신뢰성 및 아날로그 특성을 모두 고려하는 것이 반드시 필요하다고 할 수 있다.

Keywords

References

  1. S. K. Chun et. al, "Effective mass and mobility of holes in strained Si Ge layers on (001) Si Ge substrate," IEEE Trans. Electron Devices, vol. 39, p. 2153, 1992. https://doi.org/10.1109/16.155887
  2. R. J. P. Lander, et. al, "Study of hall and effective mobilities in pseudomorphic Si1-x Gex p-channel metal-oxide-semiconductor field-effect transistors at room temperature and 4.2 K," J. Appl. Phys., vol. 82, p. 5210, 1997. https://doi.org/10.1063/1.366385
  3. P. C. Bai, et. al "A 65 nm logic technology featuring 35nm gate lengths, enhanced channel strain, 8" Cu interconnect layers, low-k ILD and 0.57um2 SRAM cell," IEDM Tech. Dig., p. 657, Dec. 2004.
  4. M. T. Currie, "Strained silicon: engineered substrates and device integration," ICICDT 2004, pp. 261-268, Apr. 2004.
  5. T. Ghani, et. al "A 90 nm High Volume Manufacturing Logic Technology Featuring Novel 45 nm Gate Length Strained Silicon CMOS Transistors," IEDM Tech. Dig., p. 297, Dec. 2003.
  6. S. Ito, et. al "Mechanical stress effect of etch-stop nitride and its impact on deepsubmicron transistor design," IEDM Tech. Dig., pp. 247-250, Dec. 2000.
  7. I. S. Han, et. al "New Observation of Mobility and Reliability Dependence on Mechanical Film Stress in Strained Silicon CMOSFETs" IEEE Trans. Electron Devices, Vol. 55; No. 6, pp. 1352-1358, June 2008. https://doi.org/10.1109/TED.2008.921061
  8. T. Komoda, A. Oishi, T. Sanuki, K. Kasai, H. Yoshimura, K. Ohno, M. Iwai, M. Saito, F. Matsuoka, N. Nagashima and T. Noguchi, "Mobility Improvement for 45nm Node by Combination of Optimized Stress Control and Channel Orientation Design" IEDM Tech. Dig., p. 217, Dec. 2004.
  9. V. Chan, et. al "Strain for CMOS performance Improvement" 2005 custom integrated circuits conference, pp. 667-674, 2005.
  10. P. Rickert et. al "SoC Integration in deep submicron CMOS", IEDM Tech. Dig., pp. 653- 656, Dec. 2004.
  11. J. R. Hauser, "Extraction of Experimental Mobility Data for MOS Devices," IEEE Trans. Electron Devices, pp. 1981-1988, Nov. 1996.
  12. H. H. Ji, et. al, "dependence of analog and digital performance on mechanical film stress of ILD layers in Nanoscale CMOSFETs", J. J. Appl. Phys., Vol. 44 No. 4B, pp. 2171-2175, Apr. 2005. https://doi.org/10.1143/JJAP.44.2171
  13. P. R. Kinget, "Device Mismatch and Tradeoffs in the Design of Analog Circuits", IEEE Journal of Solid State Circuits, Vol. 40, No. 6, pp. 121 2-1224, June 2005. https://doi.org/10.1109/JSSC.2005.848021