DOI QR코드

DOI QR Code

폴리에틸렌으로 피복된 전선화염의 전파에 교류전기장이 미치는 영향에 관한 실험적 연구

Experimental Study on the Effects of AC Electric Fields on Flame Spreading over Polyethylene-insulated Electric-Wire

  • Jin, Young-Kyu (Dept. of Mechanical Engineering, Pukyong Nat'l Univ.) ;
  • Kim, Min-Kuk (Clean Combustion Research Center, King Abdullah University of Science and Technology(KAUST CCRC)) ;
  • Park, Jeong (Dept. of Mechanical Engineering, Pukyong Nat'l Univ.) ;
  • Chung, Suk-Ho (Clean Combustion Research Center, King Abdullah University of Science and Technology(KAUST CCRC)) ;
  • Kim, Tae-Hyung (Power Generation Laboratory, Korea Electric Power Research Institute, KEPCO) ;
  • Park, Jong-Ho (Dept. of Mechanical Engineering, Chungnam Nat'l Univ.)
  • 투고 : 2010.08.05
  • 심사 : 2010.09.16
  • 발행 : 2010.11.01

초록

본 연구는 교류전기장이 인가된 전선에서의 화염전파특성에 전기장이 미치는 영향에 대한 실험적 연구이다. 폴리에틸렌으로 피복된 전선에서 인가된 교류전압과 주파수에 따라 화염전파율을 도출하였다. 그리고 화염전파는 선형적 화염 전파와 비선형적으로 가속된 화염 전파로 구분되어졌다. 이것은 전선에 인가된 교류전기장에 따라 형성된 전기장 세기의 축방향 분포가 원인이 된다. 그리고 기울어진 전선화염의 화염전파율이 상대적으로 높게 나타났다. 이러한 현상은 온도균형메커니즘으로 설명이 가능하다.

In this present study, we experimentally investigated the effects of electric fields on the characteristics of flames spreading over electric-wires with AC fields. The dependence of the rate at which a flame spreads over polyethylene-insulated wires on the frequency and amplitude of the applied AC electric field was examined. The spreading of the flame can be categorized into linear spreading and non-linearly accelerated spreading of flame. This categorization is based on the axial distribution of the field strength of the applied electric field. The rate at which the flame spreads is highly dependent on the inclined direction of the wire fire. It could be possible to explain the spreading of the flame on the basis of thermal balance.

키워드

참고문헌

  1. Kikuchi, M., Fujita, O., Ito, K., Sato, A. and Sakuraya, T., 1998, “Experimental Study on Flame Spread over Wire Insulation in Microgravity,” Proc. Combust. Inst., Vol 27, pp. 2507-2514.
  2. Fujita, O., Nishizawa, K. and Ito, K., 2002, “Effect of Low External Flow on Flame Spread over Polyethylene-insulated Wire in Microgravity,” Proc. Combust. Inst., Vol 29, pp. 2545-2552. https://doi.org/10.1016/S1540-7489(02)80310-8
  3. Kido, Y., Fujita, O., Kyono, T., Ito, H. and Nakamura, Y., 2009, “Observations of Wire Ignition Phenomena at Excess Electric Current Application in Reduced Gravity,” 22nd ICDERS.
  4. Nakamura, Y., Yoshimura, N., Ito, H., Azumaya, K. and Fujita, O., 2009, “Flame Spread over Electric Wire in Sub-atmosphereic Pressure,” Proc. Combust. Inst., Vol 32, pp. 2559-2566. https://doi.org/10.1016/j.proci.2008.06.146
  5. Kim, M. K., Chung. S. H. and Fujita, O., 2009, “Effect of AC Electric Fields on Flame Spread over Electric Wire,” IAC, A2.4.6.s.
  6. NASA Handbook 8060.1C “Flammability, Odor, and Offgassing Requirements and Test Procedures for Materials in Environments that Support Combustion”
  7. Finite Element Method Magnetics 4.2, http://www.femm.info/wiki/HomePage
  8. Nakamura, Y., Yoshimura, N., Matsumura, T., Ito, H. and Fujita, O., 2008, “Opposed-wind Effect on Flame Spread of Electric Wire in Sub-atmospheric Pressure,” JTST, Vol. 3, pp. 430-441. https://doi.org/10.1299/jtst.3.430
  9. Won, S. H., Ryu, S. K., Kim, M. K., Cha, M. S. and Chung, S. H., 2008, “Effect of Electric Fields on the Propagation Speed of Tribrachial Flames in Coflow Jets,” Combust. Flame, Vol. 152, pp. 496-506. https://doi.org/10.1016/j.combustflame.2007.11.008
  10. Lawton, J. and Weinberg, F., 1969, “Electrical Aspects of Combustion,” Clarendon Press.
  11. Heber, O., Altestein, N., Ben-Itzhak, I., Diner, A., Rappaport, M., Strasser, D., Toker, Y., Zajfman, D., 2004, “Electrostatic Ion Beam Trap,” Nuclear Science Symposium Conference Record, Vol. 2, pp. 1110-1113. https://doi.org/10.1109/NSSMIC.2004.1462397