DOI QR코드

DOI QR Code

Cattle Age Prediction by Leukocytes Telomere Quantification

혈액세포의 텔로미어 함량을 이용한 소의 연령예측

  • Choi, Na-Eun (Department of Animal Science and Biotechnology, Jinju National University) ;
  • Kim, Hyun-Sub (National Institute of Animal Science, RDA) ;
  • Choe, Chang-Yong (National Institute of Animal Science, RDA) ;
  • Jeon, Gwang-Joo (Department of Biotechnology, Hankyong National University) ;
  • Sohn, Sea-Hwan (Department of Animal Science and Biotechnology, Jinju National University)
  • 최나은 (진주산업대학교 동물생명과학과) ;
  • 김현섭 (농촌진흥청 축산과학원) ;
  • 최창용 (농촌진흥청 축산과학원) ;
  • 전광주 (한경대학교 생명공학과) ;
  • 손시환 (진주산업대학교 동물생명과학과)
  • Received : 2010.07.15
  • Accepted : 2010.10.12
  • Published : 2010.10.31

Abstract

Telomeres at the end of chromosomes consist of tandem repeats of (TTAGGG)n DNA sequence and associated proteins. Telomeres have the essential functions in chromosome stability and genome integrity and are hence related to cell senescence and cancer. This study was carried out to quantify the amount of telomeric DNA and establish age prediction equations by using the quantity of telomeric DNA for cattle. Analysis of the telomere quantity of the lymphocytes was performed at different age, across breeds and between different sexes of cattle. We quantified the amount of telomeric DNA by the Q-FISH technique using the telomeric DNA probe in 460 cattle at age of 1~166 months in Korean Cattle and Holstein breeds. In results, we found that the amount of telomeric DNA decreased gradually with age. The amount of telomeric DNA of Korean Cattle was significantly higher than that of Holstein breed (P<0.01). In addition, the amount of telomeric DNA in male was significantly higher than that in female (P<0.01). Using the relationship between age and the amount of telomeric DNA in cattle, age predicting equations were established as a result of regression analysis. Because sex and breeds influenced telomeric DNA quantity, the age prediction equations were estimated separately in Korean Cattle females and Holstein females. The regression equations were $\hat{Y}$=$38.102X^2$-220.103X + 318.309 (P<0.0001, $R^2$=0.8019) in Korean Cattle females and $\hat{Y}$ = $42.799X^2$ - 199.682X + 242.106 (P<0.0001, $R^2$ = 0.8379) in Holstein females, where the X was quantity of telomeric DNA and Y was predicted age in months. These equations predicted the age of cattle with high significance and accuracy and have high R square values. Thus, it could be possible to scientifically predict the age using the above equations for Korean Cattle and Holstein females.

텔로미어란 진핵세포의 염색체 양 말단에 있는 DNA-단백질 복합체로서, 특정단백질과 TTAGGG의 반복염기서열로 구성되어있다. 이들의 기능은 핵 내 염색체의 안정성에 본질적으로 작용함으로 세포의 노화와 직접적 관련이 있다고 알려져 있다. 본 연구에서는 소의 간기상태의 백혈구 세포를 대상으로 연령별, 품종별, 성별간 telomeric DNA 함량을 분석하여 이러한 요인들이 텔로미어 함량에 미치는 영향을 살펴보고 또한, 텔로미어 함량을 이용한 개체의 연령예측 가능성을 제시하고자 하였다. 소의 텔로미어의 함량 분석은 1개월령에서 166개월령의 한우 및 홀스타인종 460두를 대상으로 telomeric DNA probe를 이용한 Q-FISH 방법으로 분석하였다. 분석 결과 소에 있어서 연령이 증가함에 따라 telomeric DNA 함유율이 일관되게 점진적으로 감소되는 양상을 보였다. 소의 품종간 telomeric DNA 함유율을 비교한 결과 한우의 telomeric DNA 함량이 홀스타인종에 비해 유의적으로 높게 나타났으며, 성별 간에도 수컷이 암컷에 비해 유의적으로 높은 telomeric DNA 함유율을 나타내어 품종별, 성별 모두 텔로미어 함유율의 유의적인 차이가 있음 확인 할 수 있었다(P<0.01). 따라서 요인별 유의적 차이가 있음으로 한우 암컷 및 홀스타인 암컷에 대한 각기 연령예측 회귀함수를 추정하였다. Telomeric DNA 함량을 독립변수(X)로 하고, 연(월)령을 종속변수(Y)로 설정하여 2차회귀식을 도출한 바 한우 암컷의 경우 $\hat{Y}$=$38.102X^2$-220.103X+318.309(P<0.0001, $R^2$=0.8019)이고, 홀스타인 암컷은 $\hat{Y}$=$42.799X^2$-199.682X+242.106(P<0.0001, $R^2$=0.8379)으로 분석되었다. 이상의 두 회귀식 모두 유의한 함수로 결정계수($R^2$) 또한 0.8 이상의 높은 상관 값을 보임에 따라 본 회귀식으로 소의 연령 예측이 가능함을 제시하고자 한다.

Keywords

Acknowledgement

Supported by : 한국연구재단

References

  1. Brummendorf, T. H., Mak, J., Sabo, K. M., Baerlocher, G. M., Dietz, K., Abkowitz, J. L. and Lansdorp, P. M. 2002. Longitudinal studies of telomere length in feline blood cells: implications for hematopoietic stem cell turnover in vivo. Exp. Hematol. 30: 1147-1152. https://doi.org/10.1016/S0301-472X(02)00888-3
  2. Benetos, A., Okuda, K., Lajemi, M., Kimura, M., Thomas, F., Skurnick, J., Labat, C., Bean, K. and Aviv, A. 2001. Telomere length as an indicator of biological aging: the gender effect and reltion with pulse pressure and pulse wave velocity. Hypertension 37(2):381-385. https://doi.org/10.1161/01.HYP.37.2.381
  3. Blackburn, E. H. 1991. Structure and function of telomere. Nature 350:569-573. https://doi.org/10.1038/350569a0
  4. Cherif, H., Tarry, J. L., Ozanne, S. E. and Hales, C. N. 2003. Ageing and telomeres: a study into organ- and gender-specific telomere shortening. Nucleic Acids Res. 31(5):1576-1583. https://doi.org/10.1093/nar/gkg208
  5. Epel, E. S., Blackburn, E. H., Lin, J., Dhabhar, F. S., Adler, N. E., Morrow, J. D. and Cawthon, R. M. 2004. Accelerated telomere shortening in response to life stress. Proc. Natl. Acad. Sci. USA 101(49): 17312-17315. https://doi.org/10.1073/pnas.0407162101
  6. Faragher, R. G. and Kipling, D. 1998. How might replicative senescence contribute to human ageing? Bioessays 20:985-991. https://doi.org/10.1002/(SICI)1521-1878(199812)20:12<985::AID-BIES4>3.3.CO;2-1
  7. Frenck, R. W. Jr., Blackburn, E. H. and Shannon, K. M. 1998. The rate of telomere sequence loss in human leukocytes varies with age. Proc. Natl. Acad. Sci. USA 95(10):5607-5610. https://doi.org/10.1073/pnas.95.10.5607
  8. Greider, C. W. and Blackburn, E. H. 1985. Identification of a specific telomere terminal transferase activity in Tetrahymena extracts. Cell 43:405-413. https://doi.org/10.1016/0092-8674(85)90170-9
  9. Hall, M. E., Nasir, L., Daunt, F., Gault, E. A., Croxall, J. P., Wanless, S. and Monaghan, P. 2004. Telomere loss in relation to age and early environment in long-lived birds. Proc. Biol. Sci. 271:1571-1576. https://doi.org/10.1098/rspb.2004.2768
  10. Harley, C. B. 1991. Telomere loss: mitotic clock or genetic time bomb? Mutat. Res. 256:271-282. https://doi.org/10.1016/0921-8734(91)90018-7
  11. Hewakapuge, S., van Oorschot, R. A., Lewandowski, P. and Baindur-Hudson, S. 2008. Investigation of telomere lengths measurement by quantitative real-time PCR to predict age. Leg Med. 10(5):236-242. https://doi.org/10.1016/j.legalmed.2008.01.007
  12. Hunt, S. C., Chen, W., Gardner, J. P., Kimura, M., Srinivasan, S. R., Eckfeldt, J. H., Berenson, G. S. and Aviv, A. 2008. Leukocyte telomeres are longer in African Americans than in whites: the national heart, lung, and blood institute family heart study and the Bogalusa heart study. Aging Cell 7(4):451-458. https://doi.org/10.1111/j.1474-9726.2008.00397.x
  13. Kotrschal, A., Ilmonen, P. and Penn, D. J. 2007. Stress impacts telomere dynamics. Biol. Lett. 3:128-130. https://doi.org/10.1098/rsbl.2006.0594
  14. Londond-Vallejo, J. A., DerSarkissian, H., Cazes, L. and Thomas, G. 2001. Differences in telomere length between homologous chromosomes in human. Nucleic Acids Res. 29:3164-3171. https://doi.org/10.1093/nar/29.15.3164
  15. Metcalfe, N. B. and Monaghan, P. 2001. Compensation for a bad start: grow now, pay later? Trends Ecol. Evol. 16:254-260. https://doi.org/10.1016/S0169-5347(01)02124-3
  16. Miyashita, N., Shiga, K., Yonai, M., Kaneyama, K., Kobayashi, S., Kojima, T., Goto, Y., Kishi, M., Aso, H., Suzuki, T., Sakagudhi, M. and Nagai, T. 2002. Remakable differences in telomere lenghts among cloned cattle derived from different cell types. Biol. Reprod. 66:1649-1655. https://doi.org/10.1095/biolreprod66.6.1649
  17. Monaghan, P. and Haussmann, M. F. 2006. Do telomere dynamics link lifestyle and lifespan? Trends Ecol Evol. 21(1):47-53. https://doi.org/10.1016/j.tree.2005.11.007
  18. Monaghan, P. 2008. Early growth conditions, phenotypic development and environmental change. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 363:1635-1645. https://doi.org/10.1098/rstb.2007.0011
  19. Nakamura, K., Takubo, K., Izumiyama-Shimomura, N., Sawabe, M., Arai, T., Kishimoto, H., Fujiwara, M., Kato, M., Oshimura, M., Ishii, A. and Ishikawa, N. 2007. Telomeric DNA length in cerebral gray and white matter is associated with longevity in individuals aged 70 years or older. Exp. Gerontol. 42:944-950. https://doi.org/10.1016/j.exger.2007.05.003
  20. Okuda, K., Bardeguez, A., Gardner, J. P., Rodriguez, P., Ganesh, V., Kimura, M., Skurnick, J., Awad, G. and Aviv, A. 2002. Telomere length in the newborrn. Pediatr. Res. 52:377-381. https://doi.org/10.1203/00006450-200209000-00012
  21. Pauliny, A., Wagner, R. H., Augustin, J., Szep, T. and Blomqvist, D. 2006. Age-independent telomere length predicts fitness in two bird species. Mol. Ecol. 15:1681-1687. https://doi.org/10.1111/j.1365-294X.2006.02862.x
  22. Perner, S., Bruderlein, S., Hasel, C., Waibel, I., Holdenried, A., Ciloglu, N., Chopurian, H., Nielsen, K. V,, Plesch, A., Hogel, J. and Moller, P. 2003. Quantifying quantitative telomere lengths of human individual chromosome arms by centromere-calibrated fluorescence in situ hybridization and digital imaging. Am. J. Path. 163:1751-1756. https://doi.org/10.1016/S0002-9440(10)63534-1
  23. Ren, F., Li, C., Xi, H., Wen, Y. and Huang, K. 2009. Estimation of human age according to telomere shortening in peripheral blood leukocytes of Tibetan. Am. J. Forensic Med. Pathol. 30(3): 252-255. https://doi.org/10.1097/PAF.0b013e318187df8e
  24. Rollo, C. D. 2002. Growth negatively impacts the life span of mammals. Evol. Dev. 4:55-61. https://doi.org/10.1046/j.1525-142x.2002.01053.x
  25. Roux, A. V., Ranjit, N., Jenny, N. S., Shea, S., Cushman, M., Fitzpatrick, A. and Seeman, T. 2009. Race/ethnicity and telomere length in the multi-ethnic study of atherosclerosis. Aging Cell 8(3):251-257. https://doi.org/10.1111/j.1474-9726.2009.00470.x
  26. Shay, J. W. 1999. At the end of the millennium, a view of the end. Science 288:1377-1379. https://doi.org/10.1126/science.288.5470.1377
  27. von Zglinicki, T. 2000. Role of oxidative stress in telomere length regulation and replicative senescence. Ann. N. Y. Acad. Sci. 908:99-110. https://doi.org/10.1111/j.1749-6632.2000.tb06639.x
  28. Wright, W. E., Tesmer, V. M., Huffman, K. E., Levene, S. D. and Shay, J. W. 1997. Normal human chromosomes have long G-rich telomeric overhangs at one end. Gen. Dev. 11:2801-2809. https://doi.org/10.1101/gad.11.21.2801
  29. Zakian, V. A. 1995. Telomeres: beginning to understand the end. Science 270:1601-1607. https://doi.org/10.1126/science.270.5242.1601
  30. Zannolli, R., Mohn, A., Buoni, S., Pietrobelli, A., Messina, M., Chiarelli, F. and Miracco, C. 2008. Telomere length and obesity. Acta. Paediatr. 97(7):952-954. https://doi.org/10.1111/j.1651-2227.2008.00783.x
  31. Zeichner, S. L., Palumbo, P., Feng, Y., Xiao, X., Gee, D., Sleasman, J., Goodenow, M., Biggar, R. and Dimitrov, D. 1999. Rapid telomere shortening in children. Blood 93:2824-2830.
  32. 김영주, 박지애, 이수희, 박원철, 손시환. 2007. 닭의 품종별, 성별 및 연령 별 각 조직의 텔로미어 함량 분석. 2007. 한국동물자원과학회 학술발표회 Proceedings Vol. II:64 .
  33. 손시환, 정현진, 최덕순. 2008. 양적형광접합보인법 (Q-FISH)에 의한 돼지 백혈구 세포의 텔로미어 함량 분석. 한국동물자원과학회지. 50(4): 465-474.
  34. 손시환, Multani, A. S., Pathak, S. 2004. 소, 돼지 염색체의 telomeric DNA 분포양상. 한국동물자원과학회지. 46(4):547-554.
  35. 정길선, 조은정, 최덕순, 이민정, 박철, 전익수, 손시환. 2006. 한국재래닭의 주령별 각 조직의 텔로미어 양적분포 양상과 텔로머레이스 활성도 분석. 한국가금학회지. 33(2):97-103.
  36. 최덕순, 조창연, 손시환. 2008. 소의 생리적 특성에 따른 세포내 텔로미어 함량과 텔로머레이스 활성도 분석. 한국동물자원과학회지. 50(4):445-456.

Cited by

  1. Inheritance and Heritability of Telomere Length in Chicken vol.41, pp.3, 2014, https://doi.org/10.5536/KJPS.2014.41.3.217
  2. Dynamics of telomere length in the chicken vol.70, pp.04, 2014, https://doi.org/10.1017/S0043933914000804