DOI QR코드

DOI QR Code

Genetic Diversity and Population Structure of Brassica juncea by Random Amplified Polymorphic DNA (RAPD)

RAPD를 이용한 겨자의 유전적 다양성과 집단구조

  • Oh, Yung-Hee (Department of Chemistry, Dongeui University) ;
  • Moon, Sung-Gi (Department of Biology, Kyungsung University) ;
  • Chae, Yang-Hee (Department of Biology, Kyungsung University) ;
  • Hong, Hwa-Jin (Department of Biology, Kyungsung University) ;
  • Cho, Min-Cheol (Department of Molecular Biology, Dongeui University) ;
  • Park, So-Hye (Department of Molecular Biology, Dongeui University) ;
  • Huh, Man-Kyu (Department of Molecular Biology, Dongeui University)
  • Received : 2010.08.11
  • Accepted : 2010.09.11
  • Published : 2010.10.30

Abstract

This study was conducted to examine the genetic diversity and population structure of 17 Brassica juncea populations in Korea. The technique of random amplified polymorphic DNA (RAPD) produced 60 polymorphic loci and 18 monomorphic loci. In a simple measure of intraspecies variability by the percentage of polymorphic bands, the Jindo population of Cheonnam showed the highest (29.5%). The cultivar exhibited the lowest variation (12.8%). Mean number of alleles per locus (A) and the effective number of alleles per locus ($A_E$) were 1.221 and 1.167, respectively. As the typical populations of this species were small, isolated, and patchily distributed in their natural populations, they maintained a low level of genetic diversity of fourteen primers. On a per locus basis, total genetic diversity values ($H_T$) and interlocus variation in the within-population genetic diversity ($H_S$) were 0.347 and 0.141, respectively. On a per-locus basis, the proportion of total genetic variation due to differences among populations ($G_{ST}$) was 0.589. This indicated that about 58.9% of the total variation was among populations. The estimate of gene flow, based on $G_{ST}$, was very low among Korean populations of B. juncea ($N_m$=0.617). These results suggest that the geological distance dispersal of wild B. juncea is the best event. RAPD markers are very effective in classifying natural population levels of B. juncea in Korea.

본 연구는 우리나라 겨자 17집단에 대한 유전적 다양도와 집단구조를 조사하였다. 60개의 다형성 좌위와 18개 단형성 좌위가 발견되었다. 다형성 밴드의 비율은 전남 진도 집단이 가장 높았으며 재배종이 가장 낮았다. 대립유전자좌위의 수는 1.221이였으며 유효한 대립유전자좌위의 수는 1.167이였다. 이 종의 전형적인 집단은 작고 격리되어 낮은 유전적 다양도를 가지고 있었다. 전체 다양도는 0.347이였으며 집단 내 다양도는 0.141이였다. 집단간분화를 나타내는 척도는 0.589였다. 아는 58.9%의 다양도가 집단간에 있음을 시사한다. 세대 간 이주하는 개체수는 0.617로 낮았다. RAPD는 겨자 집단을 구분하는데 유익하였다.

Keywords

References

  1. Aldrich, P. R., J. Doebley, K. F. Schertz, and A. Stee. 1992. Patterns of allozyme variation in cultivated and wild Sorghum bicolor. Theor. Appl. Genet. 85, 451-460.
  2. Beebe, S., P. W. Skroch, J. Tohme, M. C. Duque, F. Pedraza, and J. Nienhuis. 2000. Structure of genetic diversity among common bean landraces of Middle American origin based on correspondence analysis of RAPD. Crop Sci. 40, 264-273. https://doi.org/10.2135/cropsci2000.401264x
  3. Brown, A. H. D. 1978. Isozymes, plant population genetic structure and genetic conservation. Theor. Appl. Genet. 52, 145-157.
  4. Chan, K. F. and M. Sun. 1997. Genetic diversity and relationships detected by isozyme and RAPD analysis of crop and wild species of Amaranthus. Theor. Appl. Genet. 95, 965-873.
  5. Doebley, J. 1989. Isozymic evidence and the evolution of crop plants, pp. 46-72, In Soltis, D. E. and P. S. Soltis (eds.), Isozymes in Plant Biology, Dioscorides Press, Portland, OR.
  6. Excoffier, L., P. E. Smouse, and J. M. Quattro. 1992. Analysis of molecular variance inferred from metric distances among DNA haplotypes: applications to human mitochondrial DNA restriction data. Genetics 131, 479-491.
  7. Felsenstein, J. 1993. PHYLIP (Phylogeny Inference Package) Version 3.5s. Distributed by the Author. Department of Genetics, Univ. of Washington, Seattle.
  8. Gottlieb, L. D. 1981. Electrophoretic evidence and plant populations. Progr. Phytochem. 7, 1-46.
  9. Hamrick, J. L. and M. J. W. Godt. 1989. Allozyme diversity in plant species, pp. 304-319 In Brown, A. H. D., M. T. Clegg, A. L. Kahler, and B. S. Weir (eds.), Plant population genetics, breeding and genetic resources, Sinauer Associates, Sunderland, MA.
  10. Kiang, Y. T. and M. B. Gorman. 1983. Soybean. pp. 295-328. In Tankley, S. D. and T. J. Orton (eds.), Isozymes in Plant Genetics and Breeding, Part A. Elsevier, Amsterdam.
  11. Kresovich, S., J. G. K. Williams, J. R. McFerson, E. J. Routman, and B. A. Schaal. 1992. Characterization of genetic identities and relationships of Brassica oleraceae L. via a random amplified polymorphic DNA assay. Theor. Appl. Genet. 85, 190-196.
  12. Lee, I. H., J. I. Park, O. S. Jeong, H. J. Jung, G. H. Jung, and I. S. Nou. 2010. Genetic relationship based on RAPD analysis of Yeosu Dolsan leaf mustard (Brassica juncea). J. Life Sci. 20, 66-70. https://doi.org/10.5352/JLS.2010.20.1.066
  13. Lee, Y. N. 2007. New Flora of Korea. Kyo-Hak Publishing Co., Seoul, Korea.
  14. Lewontin, R. C. 1972. The apportionment of human diversity. Evol. Biol. 6, 381-398.
  15. Loveless, M. D. and J. L. Hamrick. 1984. Ecological determinants of genetic structure in plant populations. Annu. Rev. Ecol. Syst. 15, 65-95. https://doi.org/10.1146/annurev.es.15.110184.000433
  16. Molnar, S. J., L. E. James, and K. J. Kasha. 2000. Inheritance and RAPD tagging of multiple genes for resistance to net blotch in barley. Genome 43, 224-231. https://doi.org/10.1139/gen-43-2-224
  17. Neel, M. C. and N. C. Ellstrand. 2003. Conservation of genetic diversity in the endangered plant Eriogonum ovalifolium var. vineum (Polygonaceae). Conserv. Gen. 4, 337-352. https://doi.org/10.1023/A:1024017029933
  18. Nei, M. 1973. Analysis of gene diversity in subdivided populations. Proc. Natl. Acad. Sci. USA. 70I, 3321-3323.
  19. Ohnishi, O. and N. Asano. 1999. Genetic diversity of Fagopyrum homotropicum, a wild species related to common buckwheat. Genet. Resour. Crop Evol. 46, 389-398. https://doi.org/10.1023/A:1008640522979
  20. Saitou, N. and M. Nei. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406-425.
  21. Welsh, J. and M. McClelland. 1990. Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Res. 18, 7213-7218 https://doi.org/10.1093/nar/18.24.7213
  22. Yeh, F. C., R. C. Yang, and T. Boyle. 1999. POPGENE Version 1.31, Microsoft Windows-based Freeware for Population Genetic Analysis. University of Alberta, Alberta.

Cited by

  1. RAPD Polymorphism of Xanthoceras sorbifolium Bunge from Three Plantations of China vol.28, pp.4, 2012, https://doi.org/10.7747/JFS.2012.28.4.242