Browse > Article
http://dx.doi.org/10.5352/JLS.2010.20.10.1538

Genetic Diversity and Population Structure of Brassica juncea by Random Amplified Polymorphic DNA (RAPD)  

Oh, Yung-Hee (Department of Chemistry, Dongeui University)
Moon, Sung-Gi (Department of Biology, Kyungsung University)
Chae, Yang-Hee (Department of Biology, Kyungsung University)
Hong, Hwa-Jin (Department of Biology, Kyungsung University)
Cho, Min-Cheol (Department of Molecular Biology, Dongeui University)
Park, So-Hye (Department of Molecular Biology, Dongeui University)
Huh, Man-Kyu (Department of Molecular Biology, Dongeui University)
Publication Information
Journal of Life Science / v.20, no.10, 2010 , pp. 1538-1543 More about this Journal
Abstract
This study was conducted to examine the genetic diversity and population structure of 17 Brassica juncea populations in Korea. The technique of random amplified polymorphic DNA (RAPD) produced 60 polymorphic loci and 18 monomorphic loci. In a simple measure of intraspecies variability by the percentage of polymorphic bands, the Jindo population of Cheonnam showed the highest (29.5%). The cultivar exhibited the lowest variation (12.8%). Mean number of alleles per locus (A) and the effective number of alleles per locus ($A_E$) were 1.221 and 1.167, respectively. As the typical populations of this species were small, isolated, and patchily distributed in their natural populations, they maintained a low level of genetic diversity of fourteen primers. On a per locus basis, total genetic diversity values ($H_T$) and interlocus variation in the within-population genetic diversity ($H_S$) were 0.347 and 0.141, respectively. On a per-locus basis, the proportion of total genetic variation due to differences among populations ($G_{ST}$) was 0.589. This indicated that about 58.9% of the total variation was among populations. The estimate of gene flow, based on $G_{ST}$, was very low among Korean populations of B. juncea ($N_m$=0.617). These results suggest that the geological distance dispersal of wild B. juncea is the best event. RAPD markers are very effective in classifying natural population levels of B. juncea in Korea.
Keywords
Random amplified polymorphic DNA (RAPD); genetic diversity; Brassica juncea;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Saitou, N. and M. Nei. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406-425.
2 Welsh, J. and M. McClelland. 1990. Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Res. 18, 7213-7218   DOI
3 Yeh, F. C., R. C. Yang, and T. Boyle. 1999. POPGENE Version 1.31, Microsoft Windows-based Freeware for Population Genetic Analysis. University of Alberta, Alberta.
4 Hamrick, J. L. and M. J. W. Godt. 1989. Allozyme diversity in plant species, pp. 304-319 In Brown, A. H. D., M. T. Clegg, A. L. Kahler, and B. S. Weir (eds.), Plant population genetics, breeding and genetic resources, Sinauer Associates, Sunderland, MA.
5 Lee, Y. N. 2007. New Flora of Korea. Kyo-Hak Publishing Co., Seoul, Korea.
6 Kiang, Y. T. and M. B. Gorman. 1983. Soybean. pp. 295-328. In Tankley, S. D. and T. J. Orton (eds.), Isozymes in Plant Genetics and Breeding, Part A. Elsevier, Amsterdam.
7 Kresovich, S., J. G. K. Williams, J. R. McFerson, E. J. Routman, and B. A. Schaal. 1992. Characterization of genetic identities and relationships of Brassica oleraceae L. via a random amplified polymorphic DNA assay. Theor. Appl. Genet. 85, 190-196.
8 Lee, I. H., J. I. Park, O. S. Jeong, H. J. Jung, G. H. Jung, and I. S. Nou. 2010. Genetic relationship based on RAPD analysis of Yeosu Dolsan leaf mustard (Brassica juncea). J. Life Sci. 20, 66-70.   DOI
9 Lewontin, R. C. 1972. The apportionment of human diversity. Evol. Biol. 6, 381-398.
10 Loveless, M. D. and J. L. Hamrick. 1984. Ecological determinants of genetic structure in plant populations. Annu. Rev. Ecol. Syst. 15, 65-95.   DOI
11 Molnar, S. J., L. E. James, and K. J. Kasha. 2000. Inheritance and RAPD tagging of multiple genes for resistance to net blotch in barley. Genome 43, 224-231.   DOI
12 Neel, M. C. and N. C. Ellstrand. 2003. Conservation of genetic diversity in the endangered plant Eriogonum ovalifolium var. vineum (Polygonaceae). Conserv. Gen. 4, 337-352.   DOI
13 Nei, M. 1973. Analysis of gene diversity in subdivided populations. Proc. Natl. Acad. Sci. USA. 70I, 3321-3323.
14 Ohnishi, O. and N. Asano. 1999. Genetic diversity of Fagopyrum homotropicum, a wild species related to common buckwheat. Genet. Resour. Crop Evol. 46, 389-398.   DOI
15 Chan, K. F. and M. Sun. 1997. Genetic diversity and relationships detected by isozyme and RAPD analysis of crop and wild species of Amaranthus. Theor. Appl. Genet. 95, 965-873.
16 Aldrich, P. R., J. Doebley, K. F. Schertz, and A. Stee. 1992. Patterns of allozyme variation in cultivated and wild Sorghum bicolor. Theor. Appl. Genet. 85, 451-460.
17 Beebe, S., P. W. Skroch, J. Tohme, M. C. Duque, F. Pedraza, and J. Nienhuis. 2000. Structure of genetic diversity among common bean landraces of Middle American origin based on correspondence analysis of RAPD. Crop Sci. 40, 264-273.   DOI
18 Brown, A. H. D. 1978. Isozymes, plant population genetic structure and genetic conservation. Theor. Appl. Genet. 52, 145-157.
19 Doebley, J. 1989. Isozymic evidence and the evolution of crop plants, pp. 46-72, In Soltis, D. E. and P. S. Soltis (eds.), Isozymes in Plant Biology, Dioscorides Press, Portland, OR.
20 Excoffier, L., P. E. Smouse, and J. M. Quattro. 1992. Analysis of molecular variance inferred from metric distances among DNA haplotypes: applications to human mitochondrial DNA restriction data. Genetics 131, 479-491.
21 Felsenstein, J. 1993. PHYLIP (Phylogeny Inference Package) Version 3.5s. Distributed by the Author. Department of Genetics, Univ. of Washington, Seattle.
22 Gottlieb, L. D. 1981. Electrophoretic evidence and plant populations. Progr. Phytochem. 7, 1-46.