DOI QR코드

DOI QR Code

Extracts of Sorbus commixta and Geranium thunbergii inhibit Osteoclastogenesis and stimulate Chondrogenesis

마가목 및 현지초 추출물의 골손실 및 연골손상 억제효과

  • Moon, Eun-Jung (Graduate School of East-West Medical Science, Kyung Hee University Global Campus) ;
  • Youn, You-Suk (Department of Oriental Rehabilitation Medicine, Neck and Back Oriental Medicine Hospital) ;
  • Choi, Bo-Yun (Department of Dental Pharmacology, School of Dentistry, Chonbuk National University) ;
  • Jeong, Hyun-Uk (East-West Pharmaceutical Research Institute, Kyung Hee University) ;
  • Park, Ji-Ho (Graduate School of East-West Medical Science, Kyung Hee University Global Campus) ;
  • Oh, Myung-Sook (East-West Pharmaceutical Research Institute, Kyung Hee University) ;
  • Soh, Yun-Jo (Department of Dental Pharmacology, School of Dentistry, Chonbuk National University) ;
  • Kim, Sun-Yeou (Graduate School of East-West Medical Science, Kyung Hee University Global Campus)
  • 문은정 (경희대학교 동서의학대학원) ;
  • 윤유석 (모커리한방병원, 한방재활의학과교실) ;
  • 최보윤 (전북대학교 치의학전문대학원) ;
  • 정현욱 (경희대학교 경희동서약학연구소) ;
  • 박지호 (경희대학교 동서의학대학원) ;
  • 오명숙 (경희대학교 경희동서약학연구소) ;
  • 소윤조 (전북대학교 치의학전문대학원) ;
  • 김선여 (경희대학교 동서의학대학원)
  • Received : 2010.06.25
  • Accepted : 2010.09.08
  • Published : 2010.09.30

Abstract

This study was carried out to investigate the effect of Sorbus commixta (SC), Geranium thunbergii (GT) and their mixture (SC:GT=1:1, MIX) on inhibition of bone loss and chondral defect. To examine their activities, we measured the alkaline phosphatase (ALP) activity in human osteoblast-like MG-63 cells and performed tartrate-resistant acid phosphate (TRAP) staining in osteoclast differentiated from Raw264.7 cells. To investigate the influence on chondrocyte differentiation, we performed alcian-blue staining in chondrocyte differentiated from ATDC5 cells. All of SC, GT and MIX did not increase ALP activity in MG-63 cells. However, SC and mixture (SC:GT=1:1, MIX) significantly inhibited osteoclastic differentiation. And they also induced chondrocyte differentiation. These results suggest that SC and GT may have a potential for the treatment of bone loss and chondral defect by suppression of osteoclast differentiation and stimulation of chondrocyte differentiation. Therefore, clarification of their mechanisms and active components will be needed.

본 연구에서는 마가목 (SC), 현지초 추출물 (GT) 및 이들의 1:1 혼합물 시료 (MIX)가 골손실 및 연골손상 억제에 효과가 있는지 알아보기 위해, 각각의 시료를 조골세포주인 MG-63 세포, 파골세포로의 분화를 유도한 Raw264.7 세포와 연골세포로의 분화를 유도한 ATDC5 세포에 처리하여 세포분화 조절 정도를 확인하였다. 각 세포의 분화 정도는 alkaline phosphatase (ALP) 활성 측정, tartrate-resistant acid phosphatase (TRAP) 염색법 및 alcian-blue 염색법으로 확인하였다. 이들 시료는 MG-63 세포에서 ALP 활성에는 영향을 미치지 않았으나, 마가목 추출물 (SC) 및 마가목과 현지초 추출물의 혼합시료 (MIX)는 농도 의존적으로 파골세포의 분화를 억제하고 연골세포의 분화를 촉진하는 것으로 나타났다. 이상의 결과를 종합하여 볼 때, 마가목과 현지초는 골손실과 연골 손상으로부터 보호할 수 있는 중요한 천연물 소재임을 확인할 수 있었다. 나아가 이들 추출물의 작용기전 및 활성물질 구명에 대한 연구는 추후 더 진행되어야 할 것이다.

Keywords

References

  1. Lemaire, V. et al., "Modeling the interactions between osteoblast and osteoclast activities in bone remodeling", J. Theor. Biol., pp. 293-309, 2004. 229. https://doi.org/10.1016/j.jtbi.2004.03.023
  2. Eyre, D. R., "Bone biomarkers as tools in osteoporosis management" Spine (Phila. Pa. 1976) pp. 17S-24S, 1997. 22. https://doi.org/10.1097/00007632-199712151-00004
  3. Wozney, J. M., et al., "Novel regulators of bone formation: molecular clones and activities", Science, pp. 1528-1534, 1988. 242. https://doi.org/10.1126/science.3201241
  4. 신충호, "소아 및 청소년에서 골대사 지표들의 임상 유용성", 대한소아내분비학회지, 제6권, 제1호, pp. 4-16, 2001.
  5. Nair, S. P., et al., "Bacterially induced bone destruction: mechanisms and misconceptions", Infect. Immun., pp. 2371-2380, 1996. 64.
  6. Goldring, M. B., "The role of cytokines as inflammatory mediators in osteoarthritis: lessons from animal models", Connect. Tissue Res., pp. 1-11, 1999. 40. https://doi.org/10.3109/03008209909005273
  7. Westacott, C. I. and Sharif, M. "Cytokines in osteoarthritis: mediators or markers of joint destruction?", Semin. Arthritis. Rheum., pp. 254-272, 1996. 25. https://doi.org/10.1016/S0049-0172(96)80036-9
  8. Na, M., et al., "Inhibition of protein tyrosine phosphatase 1B by lupeol and lupenone isolated from Sorbus commixta", J. Enzyme Inhib. Med. Chem., pp. 1056-1059, 2009. 24. https://doi.org/10.1080/14756360802693312
  9. Bae, J. T., et al., "Antioxidative activity of the hydrolytic enzyme treated Sorbus commixta Hedl. and its inhibitory effect on matrix metalloproteinase-1 in UV irradiated human dermal fibroblasts", Arch.Pharm. Res., pp. 1116-1123, 2007. 30. https://doi.org/10.1007/BF02980246
  10. Kang, D. G., et al., "Methanol extract of Sorbus commixta cortex prevents vascular inflammation in rats with a high fructose-induced metabolic syndrome", Am. J. Chin. Med., pp. 265-277, 2007. 35. https://doi.org/10.1142/S0192415X07004801
  11. Sohn, E. J., et al., "Effect of methanol extract of Sorbus cortex in a rat model of L-NAME-induced atherosclerosis", Biol. Pharm. Bull., pp. 1239-1243, 2005a. 28. https://doi.org/10.1248/bpb.28.1239
  12. Sohn, E. J., et al., "Anti-atherogenic effects of the methanol extract of Sorbus cortex in atherogenic-diet rats", Biol. Pharm. Bull., pp. 1444-1449, 2005b. 28. https://doi.org/10.1248/bpb.28.1444
  13. Bhatt, L. R., et al., "A chalcone glycoside from the fruits of Sorbus commixta Hedl", .Molecules, pp. 5323-7, 2009. 16.
  14. Hiramatsu, N., et al., "Antimutagenicity of Japanese traditional herbs, gennoshoko, yomogi, senburi and iwa-tobacco", Biofactors, pp. 123-125, 2004. 22. https://doi.org/10.1002/biof.5520220124
  15. Xiufen, W., et al., "The antioxidative activity of traditional Japanese herbs", Biofactors, pp. 281-284, 2004. 21. https://doi.org/10.1002/biof.552210155
  16. Prouillet, C., et al., "Stimulatory effect of naturally occurring flavonols quercetin and kaempferol on alkaline phosphatase activity in MG-63 human osteoblasts through ERK and estrogen receptor pathway", Biochem. Pharmacol., pp. 1307-1313, 2004. 67. https://doi.org/10.1016/j.bcp.2003.11.009
  17. Wong, B. R., et al., "TRANCE is a TNF family member that regulates dendritic cell and osteoclast function", J. Leukoc. Biol., pp. 715-724, 1999. 65.
  18. Potu, B. K., et al., "Evidence-based assessment of antiosteoporotic activity of petroleum-ether extract of Cissus quadrangularis Linn. on ovariectomy-induced osteoporosis", UPS. J. Med. Sci., pp. 140-148, 2009. 114. https://doi.org/10.1080/03009730902891784
  19. Li, N., et al., "Inhibitory effects of morinda officinalis extract on bone loss in ovariectomized rats", Molecules, pp. 2049-2061, 2009. 14. https://doi.org/10.3390/molecules14062049
  20. Jiao, L., et al., "Antiosteoporotic activity of phenolic compounds from Curculigo orchioides", Phytomedicine, pp. 874-881, 2009. 16. https://doi.org/10.1016/j.phymed.2009.01.005

Cited by

  1. Clinical Roundup: Selected Treatment Options for Chronic Musculoskeletal Pain vol.19, pp.1, 2013, https://doi.org/10.1089/act.2013.19104
  2. In-vitro Antithrombosis Activity of Different Parts of Sorbus commixta from Ulleung Island vol.26, pp.3, 2016, https://doi.org/10.5352/JLS.2016.26.3.289