Robust Computation of Polyhedral Minkowski Sum Boundary

다면체간의 강건한 민코스키합 경계면 계산

  • Received : 2010.04.13
  • Accepted : 2010.05.31
  • Published : 2010.06.06

Abstract

Minkowski sum of two polyedra is an operation to compute the sum of all pairs of points contained in the polyhedra. It has been a very useful tool to solve many geometric problems arising in the areas of robotics, NC machining, solid modeling, and so on. However, very few algorithms have been proposed to compute Minkowski sum of polyhedra, because computing Minkowski sum boundaries is susceptible to roundoff errors. We propose an algorithm to robustly compute the Minkowski sum boundaries by employing the controlled linear perturbation scheme to prevent numerically ambiguous and degenerate cases from occurring. According to our experiments, our algorithm computes the Minkowski sum boundaries with the precision of $10^{-14}$ by perturbing the vertices of the input polyhedra up to $10^{-10}$.

기하학에서 민코스키합은 두 집합에 들어 있는 모든 점들간의 합으로 이루어지는 집합을 구하는 연산으로 정의되는데, 로보틱스, NC 가공, 솔리드 모델링 등의 다양한 분야의 기하학적 문제를 다루는 매우 유용한 이론적 도구로 사용되고 있다. 하지만, 단순한 정의에도 불구하고 수치연산의 반올림 오차로 인하여 다면체간의 민코스키합을 정밀하고 강건하게 계산하는 것은 매우 어렵다. 본 논문에서는 컨볼루션 계산방법을 이용하여 다면체간의 민코스키합 경계를 계산하는 알고리즘을 제안한다. 알고리즘의 강건성을 보장하기 위한 방법으로 CLP(controlled linear perturbation) 기법을 처음으로 적용하였다. CLP는 인위적 교란방법의 하나로 알고리즘의 강건성을 해치는 반올림 오차에 의한 논리적 오류발생을 막는다. 본 논문의 알고리즘은 실험 예제들에서 민코스키합의 경계면을 구성하는 완전한 2차원 다양체 구조메시를 $10^{-14}$의 정밀도로 출력하고, 이때 입력 다면체의 꼭지점 좌표는 $10^{-10}$까지 교란되는 결과를 얻었다.

Keywords

References

  1. T. Lozano-Perez, "Spatial planning: A configuration space approach," IEEE Transactions on Computers, vol. C-32, no.2, pp. 108-120, 1983. https://doi.org/10.1109/TC.1983.1676196
  2. S. Trac, "Robust explicit construction of configuration spaces using automated reasoning," Ph.D. dissertation, University of Miami, Dec. 2008.
  3. P. K. Agarwal, E. FIato, and D. Halperin, "Polygon decomposition for efficient construction of minkowski sums," in Europoean Symposium on Algorithms, 2000, pp. 20-31.
  4. D. Halperin, "Robust geometric computing in motion," The International Journal of Robotics Research, vol. 21, no. 3, pp. 219-232, 2002. https://doi.org/10.1177/027836402320556412
  5. R. Wein, "Exact and efficient construction of planar minkowski sums using the convolution method," in Proc. 14th Annual European Symposium on Algorithms (ESA), 2006, pp.829-840.
  6. L. J. Guibas, L. Ramshaw, and J. Stolfi, "A kinetic framework for computational geometry," in Proc. 24th Annu. IEEE Sympos. Found. Comput. Sci., 1983, pp. 100-111.
  7. L. J. Guibas and R. Seidel, "Computing convolutions by reciprocal search," Disc. Compo Geom., vol. 2, pp. 175-193, 1987. https://doi.org/10.1007/BF02187878
  8. P. K. Ghosh, "A unified computational framework for minkowski operations," Computers and Graphics, vol. 17, no.4, pp. 357-378,1993. https://doi.org/10.1016/0097-8493(93)90023-3
  9. K. Fukuda, "From the zonotope construction to the minkowski addition of convex polytopes," Journal of Symbolic Computation, vol. 38, no. 4, pp. 1261-1272, 2004. https://doi.org/10.1016/j.jsc.2003.08.007
  10. D. Halperin and E. Fogel, "Exact and efficient construction of minkowski sums of convex polyhedra with applications," Cmputer Aided Design, vol. 39, no. 11, pp. 929-940, 2007. https://doi.org/10.1016/j.cad.2007.05.017
  11. A. Kaul and M. A. O'Connor, "Computing minkowski sums of regular polyhedra," IBM T. J. Watson Research Center, Yorktown Heights, N. Y., Tech. Rep. RC 18891, 1993.
  12. J. Basch, L. Guibas, G. Ramkumar, and L. Ramshaw, "Poly-hedral tracings and their convolutions," in Proc. Workshop on the Algorithmic Foundations of Robotics, 1996.
  13. M. Petemell and T. Steiner, "Minkowski sum boundary surfaces of 3d-objects," Graphical Models, vol. 69, no. 3-4, pp. 180-190, 2007. https://doi.org/10.1016/j.gmod.2007.01.001
  14. G. Varadhan and D. Manocha, "Accurate minkowski sum approximation of polyhedral models," Graphical Models, vol. 68, no. 4, pp. 343-355, 2006. https://doi.org/10.1016/j.gmod.2005.11.003
  15. P. Hachenberger, "Exact minkowski sums of polyhedra and exact and efficient decomposition of polyhedra in convex pieces," in Proc. 15th Annual European Symposium on Algorithms(ESA), 2007, pp. 669-680.
  16. J. M. Lien, "Point-based minkowski sum boundary," in PG '07: Proceedings of the 15th Pacific Conferenc on Computer Grapics and Applications. IEEE Computer Society, 2007, pp.261-270.
  17. J.-M. Lien, "A simple method for computing minkowski sum boundary in 3d using collision detection," in The Eighth International Workshop on the Algorithmic Foundations of Robotics, 2008.