A Study for Individual Identification by Discriminating the Finger Face Image

손가락 면 영상 판별에 의한 개인 식별 연구

  • 김희승 (서울시립대학교 컴퓨터통계학과) ;
  • 배병규 (서울시립대학교 컴퓨터통계학과)
  • Received : 2009.05.14
  • Accepted : 2010.01.20
  • Published : 2010.03.31

Abstract

In this paper, it is tested that an individual is able to be identified with finger face images and the results are presented. Special operators, FFG(Facet Function Gradient) masks by which the gradient of a facet function fit on a gray levels of image patches can be computed are used and a new procedure named F-algorithm is introduced to match the finger face images. The finger face image is divided into the equal subregions and each subregions are divided into equal patches with this algorithm. The FFG masks are used for convolution operation over each patch to produce scalar values. These values from a feature matrix, and the identity of fingers is determined by a norm of the elements of the feature matrices. The distribution of the norms shows conspicuous differences between the pairs of hand images of the same persons and the pairs of the different persons. This is a result to prove the ability of discrimination with the finger face image. An identification rate of 95.0% is obtained as a result of the test in which 500 hand images taken from 100 persons are processed through F-algorithm. It is affirmed that the finger face reveals to be such a good biometrics as other hand parts owing to the ability of discrimination and the identification rate.

본 논문에서는 손가락 면의 영상으로 개인 식별이 가능한지를 실험하고 그 결과를 제시하였다. 이를 위하여 구배치(gradient)를 산출할 수 있는 오퍼레이터인 FFG 마스크(Facet Function Gradient mask)를 사용하고, F-알고리즘이라 명명한 새로운 방법으로 매칭 처리를 하였다. 이 알고리즘에서 손가락 면의 영상을 일정한 크기의 부영역(subregion)으로 나누고, 부영역은 다시 일정한 크기의 패치(patch)들로 나눈다. 각 패치에 같은 크기의 FFG 마스크들을 컨벌루션시키고, 마스크 별로 하나의 수치를 얻는다. 이들 수치를 특징매트릭스(feature matrix)로 삼고, norm에 의하여 동일인 여부를 판정한다. 두 개의 손 영상이 동일인의 것인 경우와 그렇지 않은 경우에 FFG 컨벌루션 수치 차 제곱 총화의 분포를 관찰한 결과 뚜렷한 차별성을 보였다. 이것은 손가락 면 영상의 식별 능력을 입증하는 결과이다. 100명의 손 영상을 5벌씩 촬영한 500장의 영상을 F-알고리즘에 의하여 실험한 결과 95.0%의 개인 식별률을 얻었다. 이러한 식별 능력과 식별률에 비추어 손가락 면(finger face)은 다른 biometric들과 대등한 수준으로 개인 식별을 위한 biometrics의 하나로 손색이 없음을 말할 수 있다

Keywords

Acknowledgement

Supported by : 서울시립대학교

References

  1. Anil K. Jain, Arun Ross, and Sharath Pankanti, "A Prototype Hand Geometry-based Verification System," Proc. of 2nd Int'l Conf. on AVBPA, pp. 166-171, 1999.
  2. A. Kumar and H. C. Shen, "Palmprint identification using palmcodes," Proceedings of Third International Conference of Image and Graphics, pp. 258-261, Dec. 2004.
  3. G. Amayeh., G. Bebis., A. Erol., and M. Nicolescu., "Peg-Free Hand Shape Verification Using High Order Zernike Moments," Conference of Computer Vision and Pattern Recognition. Digital Object Identifier 10.1109/ CVPRW, pp. 40-40, June 2006.
  4. Wei Xiong, Changsheng Xu, and Sim Heng Ong, "Peg-free Human Hand Shape Analysis and Recognition," IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005. Proceedings. (ICASSP '05). Vol.2, pp. 77-80, Mar. 18-23, 2005.
  5. Junta Doi and Masaaki Yamanaka, "Personal Authentication Using Feature Points on finger and Palmar Creases," IEEE Proceedings of the 32nd Applied Imagery Pattern Recognition Workshop, 2003.
  6. S. Ribaric., D. Ribaric., and N. Pavesic., "Multimodal biometric user-identification system for network-based applications," IEE Proceedings, online No.20031038, 2003. https://doi.org/10.1049/ip-com:20030923
  7. Hee-Sung Kim and Jun-Chul Yang, "Authentication by Digital Recognition of Palmar Features," IEEE ISIE 2006, pp.696-699, 2006.
  8. Hee-Sung Kim and Jun-Chul Yang, "A Scheme for Identification Computation of Palm Lines," The 2nd Int'l Conf. on Computational Intelligence, IASTED, 2006.
  9. P. A. Recobos Roclriguez and J. D. Landa Silva,"Biometric identification by dermatoglyphics," IEEE International Conference on Image Processing, 0-7803-3258-X, pp. 319-322, 1996.
  10. Ying-Han Pang, T. B. J. Andrew, N. C. L. David, and Hiew Fu San, "Palmprint verification with moments," Journal of WSCG, Vol.12, No.1-3, ISSN 1213-6972, 2003.
  11. C. Ravikanth and A. Kumar, "Biometric Authentication using Finger- Back Surface," Computer Vision and Pattern Recognition, CVPR '07. IEEE Conference, pp. 1-6, June 17-22, 2007.
  12. Zhong Bo Zhang, Dan Yang Wu, Si Liang Ma, and Jie Ma, "Multiscale Feature Extraction of Finger- Vein Patterns Based on Wavelet and Local Interconnection Structure Neural Network." ICNN&B '05. International Conference on Neural Networks and Brain, Vol.2, pp. 1081-1084, Oct. 13-15, 2005.
  13. Zhang Lian, Zhang Rui, and Yu Chengbo, "Study on the Identity Authentication System on Finger Vein," The 2nd International Conference on Bioinformatics and Biomedical Engineering, ICBBE 2008, pp. 1905-1907, May 16-18, 2008.
  14. Junta Doi and Masaaki Yamanaka, "Biometric Authentication Using Finger and Palmar Creases," VECIMS 2004-IEEE international Conference, 0-7803-8339-7, pp. 72-76, 2004.
  15. Anil K. Jain and Nicolae Duta, "Deformable matching of hand shapes for user verification," JEEE International Conference on Image Processing, pp. 857-861, 1999.
  16. S. Malassiotis, N. Aifanti, and M. G. Sbintzis, "Personal authentication using 3-D finger geometry," Information Forensics and Security, IEEE Transactions on Vol.1 , Issue 1, pp. 12-21, Mar. 2006.
  17. E. Yoruk, E. Konukoglu, B. Sankur, and J. Darbon, "Shape-based hand recognition," Image Processing, IEEE Transactions on Vol.15, Issue 7, pp. 1803-1815, July 2006. https://doi.org/10.1109/TIP.2006.873439
  18. A. Jain and Sharath Pankanti, "Automated Fingerprint Identification and Imaging Systems," Advances in Fingerprint Technology, 2nd ed. New York: Elsevier Science, pp. 65, 2001.
  19. H. Madasu, H. M. Gupta, N. Mittal, and S. Vasikarla, "An Authentication System Based on Palmprint," Sixth International Conference on Information Technology: New Generations, pp. 399-404, Apr. 27-29, 2009.
  20. M. Rafael Diaz, C. M. Travieso, J. B. Alonso, and M. A. Fener, "Biometric system based in the feature of hand palm," 38th Annual 2004. International Carnahan Conference on Security Technology, pp. 136-139, Oct. 11-14, 2004.
  21. J. Doublet, O. Lepetit, and M. Revenu, "Contactless hand recognition using shape and texture features," The 8th International Conference on Signal Processing, Vol.3, pp.16-20, 2006.
  22. P. Chaikan and M. Karnjandecha, "The Use of Top-View Finger Image for Personal Identification," Image and Signal Processing and Analysis, ISPA 2007 5th International Symposium, pp. 343-346, Sept. 27-29, 2007.
  23. D. L. Woodard and P. J. Flynn, "Personal identification utilizing finger surface features ," Computer Vision and Pattern Recognition CVPR 2005. IEEE Computer Society Conference, Vol.2. pp. 1030-1036, June. 20-25, 2005.