DOI QR코드

DOI QR Code

ANALYSIS OF PARA-CHLOROANILINE AFTER CHEMICAL INTERACTION BETWEEN ALEXIDINE AND SODIUM HYPOCHLORITE USING MASS SPECTROMETRY

알렉시딘과 차아염소산나트륨의 화학적 상호반응 후 mass spectrometry를 이용한 파라클로로아닐린의 검출 분석

  • Kim, Hyeon-Sik (Department of Conservative Dentistry, School of Dentistry, Seoul National University) ;
  • Han, Seung-Hyun (Oral Microbiology and Immunology, School of Dentistry, Seoul National University) ;
  • Oh, So-Ram (Department of Conservative Dentistry, School of Dentistry, Seoul National University) ;
  • Lim, Sang-Min (Department of Conservative Dentistry, School of Dentistry, Seoul National University) ;
  • Gu, Yu (Department of Conservative Dentistry, School of Dentistry, Seoul National University) ;
  • Kum, Kee-Yeon (Department of Conservative Dentistry, School of Dentistry, Seoul National University)
  • 김현식 (서울대학교 치의학대학원 치과보존학교실) ;
  • 한승현 (서울대학교 치의학대학원 구강미생물 및 면역학교실) ;
  • 오소람 (서울대학교 치의학대학원 치과보존학교실) ;
  • 임상민 (서울대학교 치의학대학원 치과보존학교실) ;
  • 구유 (서울대학교 치의학대학원 치과보존학교실) ;
  • 금기연 (서울대학교 치의학대학원 치과보존학교실)
  • Received : 2010.06.29
  • Accepted : 2010.07.07
  • Published : 2010.07.30

Abstract

Recent studies demonstrated that the combination of chlorhexidine (CHX) and sodium hypochlorite (NaOCl) resulted in the formation of a precipitate, para-chloroaniline (PCA). Alexdidine (ALX) is a kind of biguanides like CHX, and has stronger detoxification effect against the bacterial virulence factors such as lipoteichoic acid and lipopolysacchardide compared with CHX. The purpose of this study was to determine whether PCA was formed after chemical interaction between ALX and NaOCl using mass spectrometry. Mass spectrometry was performed for the mixture of five different concentrations of ALX (1, 0.5, 0.25, 0.125, 0.0625%) and 4% NaOCl. Results showed that the peak of PCA was not detected in mixed solutions of ALX and NaOCl in mass spectrometry analysis. The color of mixed solution of ALX and NaOCl after chemical interaction was light yellow to white, but there wasn't any precipitate found.

근관세척제인 NaOCl과 CHX를 병행 사용하는 경우 적갈색의 발암물질로 알려진 PCA가 생성된다. 본 연구의 목적은 CHX와 유사한 buigunide 계통의 소독제인 ALX을 NaOCl 과 혼합 반응 시 PCA가 생성되는지 여부를 mass spectrometry를 이용하여 평가하고자 하였다. 대조군으로는 4% NaOCl 용액과 2% CHX의 혼합용액, 0.5% PCA 용액, 및 1% ALX 용액을 사용하였고 실험군으로는 5가지 농도(1%, 0.5%, 0.25%, 0.125%, 0.0625%)의 ALX 용액과 4% NaOCl의 혼합용액을 질량분석기를 이용하여 molecular peak를 분석한 결과 ALX과 NaOCl의혼합물에서는 PCA (m/w = 128)로 보이는 128 피크가 관찰되지 않았다. 또한 용액의 색 변화에서도 ALX이 농도가 높을수록 옅은 노랑색을 띄었으나 농도가 낮아질수록 흰색으로 관찰되었으며 어떠한 침전물의 형성도 보이지 않았다.

Keywords

References

  1. Naenni N, Thoma K, Zehnder M. Soft tissue dissolution capacity of currently used and potential endodontic irrigants. J Endod 30:785-787, 2004. https://doi.org/10.1097/00004770-200411000-00009
  2. Park JH. The effect of solvent action of sodium hypochlorite solution on pulp tissue. Journal of Korean Academy of Conservative Dentistry 8:115-122, 1982.
  3. Leonardo MR, Tanomaru Filho M, Silva LA, Nelson Filho P, Bonifacio KC, Ito IY. In vivo antimicrobial activity of 2% chlorhexidine used as a root canal irrigating solution. J Endod 25:167-71, 1999. https://doi.org/10.1016/S0099-2399(99)80135-6
  4. Kuruvilla JR, Kamath MP. Antimicrobial activity of 2.5% sodium hypochlorite and 0.2% chlorhexidine gluconate separately and combined, as endodontic irrigants. J Endod 24:472-6, 1998. https://doi.org/10.1016/S0099-2399(98)80049-6
  5. Jeansonne MJ, White RR. A comparison of 2.0% chlorhexidine gluconate and 5.25% sodium hypochlorite as antimicrobial endodontic irrigants. J Endod 20:276-8, 1994. https://doi.org/10.1016/S0099-2399(06)80815-0
  6. Ferguson JW, Hatton JF, Gillespie MJ. Effectiveness of intracanal irrigants and medications against the yeast Candida albicans. J Endod 28:68-71, 2002. https://doi.org/10.1097/00004770-200202000-00004
  7. White RR, Hays GL, Janer LR. Residual antimicrobial activity after canal irrigation with chlorhexidine. J Endod 23:229-31, 1997. https://doi.org/10.1016/S0099-2399(97)80052-0
  8. Jeansonne MJ, White RR. A comparison of 2.0% chlorhexidine gluconate and 5.25% sodium hypochlorite as antimicrobial endodontic irrigants. J Endod 20:276-8, 1994. https://doi.org/10.1016/S0099-2399(06)80815-0
  9. Ohara P, Torabinejad M, Kettering JD. Antibacterial effects of various endodontic irrigants on selected anaerobic bacteria. Endod Dent Traumatol 9:95-100, 1993. https://doi.org/10.1111/j.1600-9657.1993.tb00258.x
  10. Delany GM, Patterson SS, Miller CH, Newton CW. The effect of chlorhexidine gluconate irrigation on the root canal flora of freshly extracted nectoric teeth. Oral Surg Oral Med Oral Pathol 53:518-23, 1982. https://doi.org/10.1016/0030-4220(82)90469-8
  11. Kim HJ, Park SH, Cho KM, Kim JW. Evaluation of time-dependent antimicrobial effect of sodium duchloroisocyanurate (NaDCC) on E. faecalis in the root canal. Journal of Korean Academy of Conservative Dentistry 32:121-129, 2007. https://doi.org/10.5395/JKACD.2007.32.2.121
  12. Lee JK, Baik JE, Yun CH, Lee K, Han SH, Lee W, Bae KS, Baek SH, Lee Y, Son WJ, Kum KY. Chlorhexidine gluconate attenuates the ability of lipoteichoic acid from Enterococcus faecalis to stimulate toll-like receptor 2. J Endod 35:212-5, 2009. https://doi.org/10.1016/j.joen.2008.10.018
  13. Rosenthal S, Spangberg L, Safavi K. Chlorhexidine substantivity in root canal dentin. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 98(4):488-92, 2004. https://doi.org/10.1016/j.tripleo.2003.07.005
  14. Basrani BR, Manek S, Sodhi RN, Fillery E, Manzur A. Interaction between sodium hypochlorite and chlorhexidine gluconate. J Endod 8:966-9, 2007.
  15. Chhabra RS, Huff JE, Haseman JK, Elwell MR, Peters AC. Carcinogenicity of p-chloroaniline in rat and mice. Food Chem Toxicol 29:119-24, 1991. https://doi.org/10.1016/0278-6915(91)90166-5
  16. Burkhardt-Holm P, Oulmi Y, Schroeder A, Storch V, Braunbeck T. Toxicity of 4-chloroaniline in early life stages if Zebrafish(Danio Rerio): II. Cytopathology and regeneration of liver and gills after prolonged exposure to waterborne 4 chloaniline. Arch Environ Contam Toxicol 37:85-102, 1999. https://doi.org/10.1007/s002449900493
  17. Bui T, Baumgartner C, Mitchell J. Evaluation of the interaction between sodium hypochlorite and chlorhexidine gluconate and its effect on root dentin. J Endod 34:181-185, 2008. https://doi.org/10.1016/j.joen.2007.11.006
  18. Zehnder M, Root canal irrigants. J Endod 32:389-398, 2006. https://doi.org/10.1016/j.joen.2005.09.014
  19. Rasimick B, Nekich M, Hladek M, Musikant B. Beutch A. Interaction between chlorhexidine digluconate and EDTA. J Endod 34:1521-23, 2008. https://doi.org/10.1016/j.joen.2008.08.039
  20. Choi MS, Park SH, Cho KM, Kim JW. The comparison of different canal irrigation methods to prevent reaction precipitate of sodium hypochlorite and chlorhexidine. J Kor Acd Con Dent 35:80-87, 2010. https://doi.org/10.5395/JKACD.2010.35.2.080
  21. McDonnell, Russell AD. Antiseptics and disinfectants: activity, action and resistance. Cliniclal Microbiol Rev 12:147-79, 1999.
  22. Zorko M, Jerala R. Alexidine and chlorhexidine bind to lipopolysaccharide and lipoteichoic acid and prevent cell activation by antibiotics. J Antimicrob Chemother 62:730-737, 2008. https://doi.org/10.1093/jac/dkn270
  23. Prestidge CA, Barnes TJ, Skinner W. Time-of-flight secondary-ion mass spectrometry for the surface characterization of solid-state pharmaceuticals. J Pharm Pharmacol 59(2):251-9, 2007. https://doi.org/10.1211/jpp.59.2.0011
  24. Basrani BR, Manek S, Mathers D, Fillery E, Sodhi RN. Determination of 4-chloroaniline and its derivatives formed in the interaction of sodium hypochlorite and chlorhexidine by using gas chromatography. J Endod 36(2):312-4, 2010. https://doi.org/10.1016/j.joen.2009.10.031
  25. Barbin LE, Saquy PC, Guedes DF, Sousa-Neto MD, Estrela C, Pecora JD. Determination of para-chloroaniline and reactive oxygen species in chlorhexidine and chlorhexidine associated with calcium hydroxide. J Endod 34(12):1508-14, 2008. https://doi.org/10.1016/j.joen.2008.08.032
  26. Weatherford TW 3rd, Finn SB, Jamison HC. Effects of an alexidine mouthwash on dental plaque and gingivitis in humans over a six-month period. J Am Dent Assoc 94:528-36, 1977. https://doi.org/10.14219/jada.archive.1977.0010
  27. Spolsky VW, Forsythe AB. Effects of alexidine.2HCL mouthwash on plaque and gingivitis after six months. J Dent Res 56(11):1349-58, 1977. https://doi.org/10.1177/00220345770560111101
  28. Roberts WR, Addy M. Comparison of the bisbiguanide antiseptics alexidine and chlorhexidine. I. Effect on plaque accumulation and salivary bacteria. J Clin Periodontol 8(3):213-9, 1981. https://doi.org/10.1111/j.1600-051X.1981.tb02032.x
  29. Addy M, Roberts WR. Comparison of the bisbiguanide antiseptics alexidine and chlorhexidine. II. Clinical and in vitro staining properties. J Clin Periodontol 8(3):220-30, 1981. https://doi.org/10.1111/j.1600-051X.1981.tb02033.x
  30. Chawner JA, Gilbert P. A comparative study of the bactericidal and growth inhibitory activities of the bisbiguanides alexidine and chlorhexidine. J Appl Bacteriol 66(3):243-52, 1989. https://doi.org/10.1111/j.1365-2672.1989.tb02475.x
  31. Baker PJ, Coburn RA, Genco RJ, Evans RT. Structural determinants of activity of chlorhexidine and alkyl bisbiguanides against the human oral flora. J Dent Res 66(6):1099-106, 1987. https://doi.org/10.1177/00220345870660060301
  32. Yip KW, Ito E, Mao X, Au PY, Hedley DW, Mocanu JD, Bastianutto C, Schimmer A, Liu FF. Potential use of alexidine dihydrochloride as an apoptosis-promoting anticancer agent. Mol Cancer Ther 5(9):2234-40, 2006. https://doi.org/10.1158/1535-7163.MCT-06-0134