Anti-inflammatory Activity of Codium fragile in Macrophages Induced by Peptidoglycan

  • Han, Sin-Hee (Department of Herbal Crop Research, National Institute of Horticultural & Herbal Science, RDA, Eumsung) ;
  • Kim, Young-Guk (Department of Herbal Crop Research, National Institute of Horticultural & Herbal Science, RDA, Eumsung) ;
  • Lee, Su-Huan (Department of Herbal Crop Research, National Institute of Horticultural & Herbal Science, RDA, Eumsung) ;
  • Park, Chung-Berm (Department of Herbal Crop Research, National Institute of Horticultural & Herbal Science, RDA, Eumsung) ;
  • Han, Seung-Won (Urban Agriculture Research Division, National Institute of Horticultural & Herbal Science, RDA) ;
  • Jang, Hye-Jin (Department of Oriental Pharmacy, College of Pharmacy, Wonkwang University, Wonkwang Oriental Medicines Research Institute) ;
  • Lee, Hyo-Jeong (Department of Oriental Pharmacy, College of Pharmacy, Wonkwang University, Wonkwang Oriental Medicines Research Institute) ;
  • Park, Seong-Cheol (Department of Oriental Pharmacy, College of Pharmacy, Wonkwang University, Wonkwang Oriental Medicines Research Institute) ;
  • Kim, Hye-Sung (Department of Oriental Pharmacy, College of Pharmacy, Wonkwang University, Wonkwang Oriental Medicines Research Institute) ;
  • Lee, Young-Seob (Department of Oriental Pharmacy, College of Pharmacy, Wonkwang University, Wonkwang Oriental Medicines Research Institute) ;
  • Kwon, Dong-Yeul (Department of Oriental Pharmacy, College of Pharmacy, Wonkwang University, Wonkwang Oriental Medicines Research Institute)
  • Received : 2010.07.07
  • Accepted : 2010.09.13
  • Published : 2010.09.30

Abstract

To fine out the anti-inflammatory activities of the C. fragile. and its mechanism were investigated in macrophages induced by Peptidoglycan (PGN). Treatments of macrophages with 100 ug/ml of ethanol extract of Codium fragile (EECF) inhibited PGN-induced IL-6, NO and PGE2 production in a dose-dependent manner as well as expression of iNOS and COX-2. EECF inhibited PGN-induced extracellular signal-regulated kinase (ERK) 1/2, JNK 1/2 and p38 MAPK phosphorylation, which suggests that EECF inhibits IL-6 and NO secretion by blocking MAPKs phosphorylation. These findings may help elucidate the mechanism by which EECF modulates RAW 264.7 cell activation under inflammatory conditions.

Keywords

References

  1. Zhang, Y.S., Dictionary of Chinese Marine Drugs. China Ocean Press, Beijing, China. p. 507 (1994).
  2. Medzhitov, R. and C.A. Janeway, Jr. An ancient system of host defense. Curr. Opin. Immunol. 10, 12-15 (1998). https://doi.org/10.1016/S0952-7915(98)80024-1
  3. Hoffmann, J.A, Kafatos, F.C., Janeway, C.A., and Ezekowitz, R.A., Phylogenetic perspectives in innate immunity. Science 284, 1313-1318 (1999). https://doi.org/10.1126/science.284.5418.1313
  4. Ulevitch, R.J. and Tobias, P.S., Receptor-dependent mechanisms of cell stimulation by bacterial endotoxin. Annu. Rev. Immunol, 13, 437-457 (1995). https://doi.org/10.1146/annurev.iy.13.040195.002253
  5. Nakanishi, T., Mukai, K., Yumoto, H., Hirao, K., Hosokawa, Y., and Matsuo, T., Anti-inflammatory effect of catechin on cultured human dental pulp cells affected by bacteria-derived factors. Eur J Oral Sci. 118(2), 145-50 (2010). https://doi.org/10.1111/j.1600-0722.2010.00714.x
  6. Pierce, G.F., Macrophages: important physiologic and pathologic sources of polypeptide growth factors. Am J Respir Cell Mol Biol. 2, 233-234 (1990). https://doi.org/10.1165/ajrcmb/2.3.233
  7. Chen, C., Chen, Y.H., and Lin, W.W., Involvement of p38 mitogenactivated protein kinase in lipopolysaccharide-induced iNOS and COX-2 expression in J774 macrophage. Immunology, 97, 124-129 (1999). https://doi.org/10.1046/j.1365-2567.1999.00747.x
  8. Chan, E.D. and Riches, D.W., Potential role of the JNK/SAPK signal transduction pathway in the induction of iNOS by $TNF-\alpha$ Biochem Biophys Res Commun, 253, 790-796 (1998). https://doi.org/10.1006/bbrc.1998.9857
  9. Kim, Y.H., Lee, S.H., Lee, J.Y., Choi, S.W., Park, J.W., and Kwon, T.K., Triptolide inhibits murine inducible nitric oxide synthase expression by down-regulating lipopolysaccharide-induced activity of nuclear factor-kappa B and c-Jun $NH_{2}-terminal$ kinase. Eur J Pharmacol, 494, 1-9 (2004). https://doi.org/10.1016/j.ejphar.2004.04.040
  10. Zhu, W., Chiu, L.C., Ooi, V.E., Chan, P.K., and Ang, P.O. Jr., Antiviral property and mechanisms of a sulphated polysaccharide from the brown alga Sargassumpatens against Herpes simplex virus type 1. Phytomedicine 13, 695-701 (2006). https://doi.org/10.1016/j.phymed.2005.11.003
  11. Oh, K.B., Lee, J.H., Chung, S.C., Shin, J., Shin, H.J., Kim, H.K., and Lee, H.S., Antimicrobial activities of the bromophenols from the red alga Odonthalia corymbifera and some synthetic derivatives. Bioorgan. Med. Chem. Lett. 18, 104-108 (2008). https://doi.org/10.1016/j.bmcl.2007.11.003
  12. Bennamara, A., Abourriche, A., Berrada, M., Charrouf, M., Chaib, N., Boudouma, M., and Garneau, F.X., Methoxybifurcarenone: An antifungal and antibacterial meroditerpenoid from the brown alga Cystoseira tamariscifolia. Phytochemistry 52, 37-40 (1999). https://doi.org/10.1016/S0031-9422(99)00040-0
  13. Glombitza, K.W. and Koch, M., Secondary metabolites of pharmaceutical potential. pp. 161-238. In: Algal and Cyanobacterial Biotechnology. Cresswell RC, Rees TAV, Shah N (eds). Longman Scientific & Technical, Harlow, Essex, England (1989).
  14. Kwon, H.J., Bae, S.Y., Kim, K.H., Han, C.H., Cho, S.H., Nam, S.W., Choi, Y.H., and Kim, B.W., Induction of apoptosis in HeLa cells by ethanolic extract of Corallina pilulifera. Food Chem. 104, 196-201 (2007). https://doi.org/10.1016/j.foodchem.2006.11.031
  15. Cavas, L., Baskin, Y., Yurdakoc, K., and Olgun, N., Antiproliferative and newly attributed apoptotic activities from an invasive marine alga: Caulerpa racemosa var. cylindracea. J. Exp. Mar. Biol. Ecol. 339, 111- 119 (2006). https://doi.org/10.1016/j.jembe.2006.07.019
  16. Athukorala, Y., Kim, K.N., and Jeon, Y.J., Antiproliferative and antioxidant properties of an enzymatic hydrolysate from brown alga, Ecklonia cava. Food Chem. Toxicol. 44, 1065-1074 (2006). https://doi.org/10.1016/j.fct.2006.01.011
  17. Zhou, G., Xin, H., Sheng, W., Sun, Y., Li, Z., and Xu, Z., In vivo growth inhibition of S180 tumor by mixture of 5-Fu and low molecular λ- carrageenan from Chondrus ocellatus. Pharmacol. Res. 51, 153-157 (2005). https://doi.org/10.1016/j.phrs.2004.07.003
  18. Yamamoto, M. and Mita, K., Hiroshime Joshi Digaku Kaseigakubu Kiyo, 9, 37 (1974)
  19. MacMicking, J., Q.W. Xie and C. Nathan. Nitric oxide and macrophage function. Annu Rev Immunol. 15, 323-350 (1997). https://doi.org/10.1146/annurev.immunol.15.1.323
  20. Ohshima, H. and Bartsch, H., Chronic infections and inflammatory processes as cancer risk factors: possible role of nitric oxide in carcinogenesis. Mutat Res. 305, 253-264 (1994). https://doi.org/10.1016/0027-5107(94)90245-3
  21. Szabó, C. Alterations in nitric oxide production in various forms of circulatory shock. New Horiz. 3, 2-32 (1995).
  22. Koo, T.H., Lee, J.H., Park, Y.J., Hong, Y.S., Kim, H.S., Kim, K.W., and Lee, J.J., A sesquiterpene lactone, costunolide, from Magnolia grandiflora inhibits NF-kappa B by targeting I kappa B phosphorylation. Planta Med. 67, 103-107 (2001). https://doi.org/10.1055/s-2001-11503
  23. Johnson, G.L. and Lapadat, R., Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science. 298, 1911-1912 (2002). https://doi.org/10.1126/science.1072682