DOI QR코드

DOI QR Code

A Study on the Shape of Shirring Using 3D Virtual Clothing System

3차원 가상 의복의 셔링 표현에 관한 연구

  • Kang, In-Ae (Dept. of Apparel & Textile Design, Konkuk University) ;
  • Lee, So-Young (Dept. of Apparel & Textile Design, Konkuk University)
  • 강인애 (건국대학교 의상디자인과) ;
  • 이소영 (건국대학교 의상디자인과)
  • Received : 2010.04.19
  • Accepted : 2010.06.05
  • Published : 2010.07.31

Abstract

Study is a basic analysis of a future virtual clothing system based on a comparative analysis of all the shirring, using a 3-dimensional apparel cad system. Frilled skirts shirred at the lower hemline were the subject of this study for a comparison of expression and shape of shirring. It compared the silhouette and details expressed in virtual and real skirts made of woolen fabrics and polyester satin, with different widths (1.5, 2 and 2.5 widths). It was found that the virtual skirt could not express shirring as exquisitely as the real skirt due to fabric thickness and other fabric characteristics. In addition, the increase in widths caused the frill shape to deform badly. In the case of a virtual skirt made of polyester satin, the increased multiplication factor let the frill spread out sharply (unlike the real skirt). Simulated skirts of polyester satin and woolen spread out to the sides with the sidelines of their frills hanging down markedly (unlike the real cloths) when the frills changed from 1.5 widths to 2 widths. When it came to the virtual skirt, side-line from the hip down all the way short of frill contorted with the wrinkle multiplication factor of 2 and 2.5 widths. This phenomenon was more notable in polyester satin skirts than in woolen skirts.

Keywords

References

  1. 강인애. (2007). 3차원 가상 착의 시스템 분석 및 개선방안 연구 건국대학교 일반대학원 박사학위 논문.
  2. 구미란, 서미아. (2009). 재단각도에 따른 세미플레어 스커트의 외관 및 헴라인 드레이프 형상에 관한 연구. 복식문화연구, 17(3), 499-511.
  3. 김소영, 홍경희. (2009). 3차원 스캔한 인체 샅부위의 결측부위 복원방법 비교. 한국의류학회지, 33(3), 401-409. https://doi.org/10.5850/JKSCT.2009.33.3.401
  4. 김숙진. (2006). 가상 의상 모델링 및 착장 소프트웨어를 위한 가이드라인. 대한가정학회지, 44(2), 127-135.
  5. 윤미경, 남윤자, 최경미. (2007). 3차원 인체 형상을 이용한 20대 여성의 하반신 전개패턴에 관한 연구. 한국의류학회지, 31(5), 692-704. https://doi.org/10.5850/JKSCT.2007.31.5.692
  6. 이명희. (2006). 플레어스커트의 가상 착용 형상에 관한 연구. 한국의상디자인학회지, 8(2), 27-35.
  7. 이명희, 정희경. (2006). 개더 스커트 형상 프로모션의 3차원적 해석. 한국의류학회지, 30(11), 1598-1607.
  8. 이선경. (2009). 3D 의상 CAD를 이용한 가상 의복과 실물의복의 실루엣 비교 연구. 건국대학교 일반대학원 석사학위 논문.
  9. 정연희, 홍경희. (2006). 3D 스캔데이터를 활용한 밀착패턴원형 개발. 한국의류학회지, 30(1), 157-166.
  10. 최영림, 남윤자, 최경미. (2006). Grid method에 의한 3차원 형상의 평면전개를 위한 Optimal matrix 표준화 연구. 한국의류학회지, 30(8), 1242-1252.
  11. Choi, Y., Komatsu, T., lnui, S., Takateral, M., Shimizu, Y., & Park. H. (2007). Individual pattem making using computerized draping method for clothing. Textile Research Journal, 76(8), 646-654.
  12. Daanen, H., & Hong, S. A. (2008). Made-to-measure pattern development based on 3D whole body scans. International Journal of Clothing Science and Technology, 20(1), 15-25. https://doi.org/10.1108/09556220810843502
  13. SuI, I. H., & Kang, T. J. (2006). Interactive garment pattern design using virtual scissoring method. International Journal of Clothing Science and Technology, 18(1), 31-42. https://doi.org/10.1108/09556220610637495

Cited by

  1. Investigation of the Validity of 3-D Virtual Fitting for Pants vol.33, pp.4, 2015, https://doi.org/10.1177/0887302X15592472
  2. Effects of bending properties and drapability on the hand and appearance of wool-blended Fabrics: Comparison of real clothing with online and 3D virtual garments vol.14, pp.12, 2013, https://doi.org/10.1007/s12221-013-2148-2
  3. A Study on Based on the Possibility of Quantitative Analysis using Virtual Clothing Simulation according to Raglan Sleeve Pattern Types vol.21, pp.2, 2012, https://doi.org/10.5934/KJHE.2012.21.2.299
  4. The Comparative Study on a Characteristic Expressivity of Movie Clothings and 3D Virtual Clothings - Focusing on the Software : CLO 3D & Mavrelous Designe2 - vol.14, pp.1, 2012, https://doi.org/10.5805/KSCI.2012.14.1.001
  5. Property Changes of Woven Blouse Fabrics by bonding fusible interlinings for a 3D Virtual Try-on System vol.16, pp.6, 2014, https://doi.org/10.5805/SFTI.2014.16.6.1008