DOI QR코드

DOI QR Code

Force Field Parameters for 3-Nitrotyrosine and 6-Nitrotryptophan

  • Myung, Yoo-Chan (Department of Biochemistry and Institute for Life Sciences, Kangwon National University) ;
  • Han, Sang-Hwa (Department of Biochemistry and Institute for Life Sciences, Kangwon National University)
  • Received : 2010.07.02
  • Accepted : 2010.07.26
  • Published : 2010.09.20

Abstract

Nitration of tyrosine and tryptophan residues is common in cells under nitrative stress. However, physiological consequences of protein nitration are not well characterized on a molecular level due to limited availability of the 3D structures of nitrated proteins. Molecular dynamics (MD) simulation can be an alternative tool to probe the structural perturbations induced by nitration. In this study we developed molecular mechanics parameters for 3-nitrotyrosine (NIY) and 6-nitrotryptophan (NIW) that are compatible with the AMBER-99 force field. Partial atomic charges were derived by using a multi-conformational restrained electrostatic potential (RESP) methodology that included the geometry optimized structures of both $\alpha$- and $\beta$-conformers of a capped tripeptide ACE-NIY-NME or ACE-NIW-NME. Force constants for bonds and angles were adopted from the generalized AMBER force field. Torsional force constants for the proper dihedral C-C-N-O and improper dihedral C-O-N-O of the nitro group in NIY were determined by fitting the torsional energy profiles obtained from quantum mechanical (QM) geometry optimization with those from molecular mechanical (MM) energy minimization. Force field parameters obtained for NIY were transferable to NIW so that they reproduced the QM torsional energy profiles of ACE-NIW-NME accurately. Moreover, the QM optimized structures of the tripeptides containing NIY and NIW were almost identical to the corresponding structures obtained from MM energy minimization, attesting the validity of the current parameter set. Molecular dynamics simulations of thioredoxin nitrated at the single tyrosine and tryptophan yielded well-behaved trajectories suggesting that the parameters are suitable for molecular dynamics simulations of a nitrated protein.

Keywords

References

  1. Roncone, R.; Barbieri, M.; Monzani, E.; Casella, L. Coord. Chem. Rev. 2006, 250, 1286. https://doi.org/10.1016/j.ccr.2005.11.015
  2. Beckman, J. S. Chem. Res. Toxicol. 1996, 9, 836. https://doi.org/10.1021/tx9501445
  3. Abello, N.; Kerstjens, H. A.; Postma, D. S.; Bischoff, R. J. Proteome. Res. 2009, 8, 3222. https://doi.org/10.1021/pr900039c
  4. Yamakura, F.; Ikeda, K. Nitric Oxide 2006, 14, 152. https://doi.org/10.1016/j.niox.2005.07.009
  5. Souza, J. M.; Peluffo, G.; Radi, R. Free Radic. Biol. Med. 2008, 45, 357. https://doi.org/10.1016/j.freeradbiomed.2008.04.010
  6. Smith, C. D.; Carson, M.; van der Woerd, M.; Chen, J.; Ischiropoulos, H.; Beckman, J. S. Arch. Biochem. Biophys. 1992, 299, 350. https://doi.org/10.1016/0003-9861(92)90286-6
  7. Savvides, S. N.; Scheiwein, M.; Bohme, C. C.; Arteel, G. E.; Karplus, P. A.; Becker, K.; Schirmer, R. H. J. Biol. Chem. 2002, 277, 2779. https://doi.org/10.1074/jbc.M108190200
  8. Quint, P.; Reutzel, R.; Mikulski, R.; McKenna, R.; Silverman, D. N. Free Radic. Biol. Med. 2006, 40, 453. https://doi.org/10.1016/j.freeradbiomed.2005.08.045
  9. Lyashenko, A. V.; Zhukhlistova, N. E.; Gabdoulkhakov, A. G.; Zhukova, Y. N.; Voelter, W.; Zaitsev, V. N.; Bento, I.; Stepanova, E. V.; Kachalova, G. S.; Koroleva, O. V.; Cherkashyn, E. A.; Tishkov, V. I.; Lamzin, V. S.; Schirwitz, K.; Morgunova, E. Y.; Betzel, C.; Lindley, P. F.; Mikhailov, A. M. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 2006, 62, 954. https://doi.org/10.1107/S1744309106036578
  10. Han, S. Biochem. Biophys. Res. Commun. 2008, 377, 612. https://doi.org/10.1016/j.bbrc.2008.10.017
  11. Goddard, T. D.; Huang, C. C.; Ferrin, T. E. J. Struct. Biol. 2007, 157, 281. https://doi.org/10.1016/j.jsb.2006.06.010
  12. Frisch, M. J. et al., Gaussian03 program, Revision A.9 package, Gaussian, Inc.; Pittsburgh, PA, 2003.
  13. Hess, B.; Kutzner, C.; van der Spoel, D.; Lindahl, E. J. Chem. Theory Comput. 2008, 4, 435. https://doi.org/10.1021/ct700301q
  14. Sorin, E. J.; Pande, V. S. Biophys. J. 2005, 88, 2472. Also visit http://chemistry.csulb.edu/ffamber https://doi.org/10.1529/biophysj.104.051938
  15. Pearlman, D. A.; Case, D. A.; Caldwell, J. W.; Ross, W. R.; Cheatham, I. T. E.; De-Bolt, S.; Ferguson, D.; Seibel, G.; Kollman, P. Comp. Phys. Commun. 1995, 91, 1. https://doi.org/10.1016/0010-4655(95)00041-D
  16. Mobley, D. L.; Chodera, J. D.; Dill, K. A. J. Chem. Phys. 2006, 125, 084902. https://doi.org/10.1063/1.2221683
  17. Pigache, A.; Cieplak, P.; Dupradeau, F.-Y. Automatic and highly reproducible RESP and ESP charge derivation: Application to the development of programs RED and X RED, 227th ACS National Meeting, Anaheim, CA, USA, March 28 - April 1, 2004. Also visit http://q4md-forcefieldtools.org/RED/
  18. Wang, J.; Cieplak, P.; Kollman, P. A. J. Comp. Chem. 2000, 21, 1049. https://doi.org/10.1002/1096-987X(200009)21:12<1049::AID-JCC3>3.0.CO;2-F
  19. Cieplak, P.; Cornell, W. D.; Bayly, C.; Kollman, P. A. J. Comput. Chem. 1995, 16, 1357. https://doi.org/10.1002/jcc.540161106
  20. Wang, J.; Wolf, R. M.; Caldwell, J. W.; Kollman, P. A.; Case, D. A. J. Comput. Chem. 2004, 25, 1157. https://doi.org/10.1002/jcc.20035
  21. Wang, J.; Wang, W.; Kollman, P. A.; Case, D. A. J. Mol. Graph. Model. 2006, 25, 247. https://doi.org/10.1016/j.jmgm.2005.12.005
  22. Weichsel, A.; Gasdaska, J. R.; Powis, G.; Montfort, W. R. Structure 1996, 4, 735. https://doi.org/10.1016/S0969-2126(96)00079-2
  23. Essmann, U.; Perera, L.; Berkowitz, M. L.; Darden, T.; Lee, H.; Pedersen, L. G. J. Chem. Phys. 1995, 103, 8577. https://doi.org/10.1063/1.470117
  24. Hess, B.; Bekker, H.; Berendsen, H. J. C.; Fraaije, J. G. E. M. J. Comp. Chem. 1997, 18, 1463. https://doi.org/10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H
  25. Berendsen, H. J. C.; Postma, J. P. M.; van Gunsteren, W. F.; DiNola, A.; Haak, J. R. J. Chem. Phys. 1984, 81, 3684. https://doi.org/10.1063/1.448118
  26. Buemi, G. Chem. Phys. 2002, 282, 181. https://doi.org/10.1016/S0301-0104(02)00677-8
  27. Granzhan, V. A.; Kolesnik, M. I. J. Struct. Chem. 1971, 11, 995. https://doi.org/10.1007/BF00744596
  28. Takezaki, M.; Hirota, N.; Terazima, M.; Sato, H.; Nakajima, T.; Kato, S. J. Phys. Chem. 1997, 101, 5190. https://doi.org/10.1021/jp970937v
  29. Borisenko, K. B.; Hargittai, I. J. Mol. Struct. 1996, 382, 171. https://doi.org/10.1016/0022-2860(96)09312-X
  30. Han, S. Biochem. Biophys. Res. Commun. 2007, 362, 532. https://doi.org/10.1016/j.bbrc.2007.08.037
  31. Tao, L.; Jiao, X.; Gao, E.; Lau, W. B.; Yuan, Y.; Lopez, B.; Christopher, T.; RamachandraRao, S. P.; Williams, W.; Southan, G,; Sharma, K.; Koch, W.; Ma, X. L. Circulation 2006, 114, 1395. https://doi.org/10.1161/CIRCULATIONAHA.106.625061
  32. Zhang, H.; Tao, L.; Jiao, X.; Gao, E.; Lopez, B. L.; Christopher, T. A.; Koch, W.; Ma, X. L. Free Radic. Biol. Med. 2007, 43, 39. https://doi.org/10.1016/j.freeradbiomed.2007.03.016

Cited by

  1. The Impact of Nitration on the Structure and Immunogenicity of the Major Birch Pollen Allergen Bet v 1.0101 vol.9, pp.8, 2014, https://doi.org/10.1371/journal.pone.0104520
  2. Modelling water diffusion in plasticizers: development and optimization of a force field for 2,4-dinitroethylbenzene and 2,4,6-trinitroethylbenzene vol.8, pp.11, 2018, https://doi.org/10.1039/C7RA12254C