DOI QR코드

DOI QR Code

Dissociation of the Phenylarsane Molecular Ion: A Theoretical Study

  • Received : 2010.06.28
  • Accepted : 2010.07.26
  • Published : 2010.09.20

Abstract

The potential energy surfaces (PESs) for the primary and secondary dissociations of the phenylarsane molecular ion (1a) were determined from the quantum chemical calculations using the G3(MP2)//B3LYP method. Several pathways for the loss of $H{\cdot}$ were determined and occurred though rearrangements as well as through direct bond cleavages. The kinetic analysis based on the PES for the primary dissociation showed that the loss of $H_2$ was more favored than the loss of $H{\cdot}$, but the $H{\cdot}$. loss competed with the $H_2$ loss at high energies. The bicyclic isomer, 7-arsa-norcaradiene radical cation, was formed through the 1,2 shift of an $\alpha$-H of 1a and played an important role as an intermediate for the further rearrangements in the loss of $H{\cdot}$ and the losses of $As{\cdot}$ and AsH. The reaction pathways for the formation of the major products in the secondary dissociations of $[M-H]^+$ and $[M-H_2]^{+\cdot}$. were examined. The theoretical prediction explained the previous experimental results for the dissociation at high energies but not the dissociation at low energies.

Keywords

References

  1. Lifshitz, C. Acc. Chem. Res. 1994, 27, 138. https://doi.org/10.1021/ar00041a004
  2. Lifshitz, C.; Gotkis, Y.; Ioffe, A.; Laskin, J.; Shaik, S. Int. J. Mass Spectrom. Ion Processes 1993, 125, 7. https://doi.org/10.1016/0168-1176(93)80020-F
  3. Choe, J. C. J. Phys. Chem. A 2006, 110, 7655. https://doi.org/10.1021/jp0612782
  4. Choe, J. C.; Cheong, N. R.; Park, S. M. Int. J. Mass Spectrom. 2009, 279, 25. https://doi.org/10.1016/j.ijms.2008.09.013
  5. Le, H. T.; Flammang, R.; Gerbaux, P.; Bouchoux, G.; Nguyen, M. T. J. Phys. Chem. A 2001, 105, 11582. https://doi.org/10.1021/jp012679e
  6. Choe, J. C. Int. J. Mass Spectrom. 2004, 237, 1. https://doi.org/10.1016/j.ijms.2004.06.008
  7. Kim, S. Y.; Choe, J. C. Int. J. Mass Spectrom. 2010, 294, 40. https://doi.org/10.1016/j.ijms.2010.05.006
  8. Kim, S. Y.; Choe, J. C. Int. J. Mass Spectrom. 2010, 295, 65. https://doi.org/10.1016/j.ijms.2010.07.005
  9. Letzel, M.; Kirchhoff, D.; Grutzmacher, H. F.; Stein, D.; Grutzmacher, H. Dalton Trans. 2006, 2008.
  10. Letzel, M.; Grutzmacher, H. F.; Stein, D.; Grutzmacher, H. Dalton Trans. 2008, 3282.
  11. Choe, J. C. Int. J. Mass Spectrom. 2009, 286, 104. https://doi.org/10.1016/j.ijms.2009.07.007
  12. Choe, J. C. Bull. Korean Chem. Soc 2007, 28, 319. https://doi.org/10.5012/bkcs.2007.28.2.319
  13. Choe, J. C. Chem. Phys. Lett. 2006, 421, 589. https://doi.org/10.1016/j.cplett.2006.02.029
  14. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Revision A. 02, Gaussian. In Inc., Wallingford CT, 2009.
  15. Baboul, A. G.; Curtiss, L. A.; Redfern, P. C. J. Chem. Phys. 1999, 110, 7650. https://doi.org/10.1063/1.478676
  16. Baer, T.; Hase, W. L. Unimolecular Reaction Dynamics: Theory and Experiments; Oxford University Press: New York, 1996.
  17. Beyer, T.; Swinehart, D. R. ACM Commun. 1973, 16, 379. https://doi.org/10.1145/362248.362275
  18. Scott, A. P.; Radom, L. J. Phys. Chem. A 1996, 100, 16502. https://doi.org/10.1021/jp960976r
  19. Lifshitz, C. Adv. Mass Spectrom. 1989, 11, 713.
  20. Kim, M. S.; Kwon, C. H.; Choe, J. C. J. Chem. Phys. 2000, 113, 9532. https://doi.org/10.1063/1.1321048
  21. Youn, Y. Y.; Kwon, C. H.; Choe, J. C.; Kim, M. S. J. Chem. Phys. 2002, 117, 2538. https://doi.org/10.1063/1.1491412
  22. Youn, Y. Y.; Choe, J. C.; Kim, M. S. J. Am. Soc. Mass Spectrom. 2003, 14, 110. https://doi.org/10.1016/S1044-0305(02)00819-X
  23. Kwon, C. H.; Kim, M. S.; Choe, J. C. J. Am. Soc. Mass Spectrom. 2001, 12, 1120. https://doi.org/10.1016/S1044-0305(01)00293-8