DOI QR코드

DOI QR Code

Rabbit calvaria를 이용하여 hyaluronic acid (HA)를 처리한 poly (D,L-lactic-co-glycolic acid) 차폐막들의 골 생성능력에 대한 비교 연구

Evaluation on the bone regenerative capacity of hyaluronic acid applied poly (D,L-lactic-co-glycolic acid) membranes in rabbit calvarial defect

  • 김남숙 (전남대학교 치의학전문대학원 보철학교실) ;
  • 윤귀덕 (전남대학교 치의학전문대학원 보철학교실) ;
  • 방몽숙 (전남대학교 치의학전문대학원 보철학교실) ;
  • 양홍서 (전남대학교 치의학전문대학원 보철학교실) ;
  • 임현필 (전남대학교 치의학전문대학원 보철학교실) ;
  • 강성수 (전남대학교 수의과대학) ;
  • 박상원 (전남대학교 치의학전문대학원 보철학교실)
  • Kim, Nam-Sook (Department of Prosthodontics, School of Dentistry, Chonnam National University) ;
  • Yun, Kwi-Dug (Department of Prosthodontics, School of Dentistry, Chonnam National University) ;
  • Vang, Mong-Sook (Department of Prosthodontics, School of Dentistry, Chonnam National University) ;
  • Yang, Hong-So (Department of Prosthodontics, School of Dentistry, Chonnam National University) ;
  • Lim, Hyun-Phil (Department of Prosthodontics, School of Dentistry, Chonnam National University) ;
  • Kang, Sung-Soo (College of Veterinary Medicine, Chonnam National University) ;
  • Park, Sang-Won (Department of Prosthodontics, School of Dentistry, Chonnam National University)
  • 투고 : 2010.04.01
  • 심사 : 2010.04.15
  • 발행 : 2010.04.30

초록

연구목적: 본 연구는 hyaluronic acid (HA)를 poly (D, L-lactic-co-glycolic acid) (PLGA)에 적용하여 새로 개발된 차폐막들을 실험군으로, 차폐막이 사용되지 않은 조건과 시중에 사용 중인 collagen membrane ($Ossix^{TM}$)을 이용한 조건을 대조군으로 하여, 토끼 두개골에 형성된 골 결손부에 4, 8, 12주간 적용하고 조직학적인 관찰을 함으로써 골 재생 능력을 비교 평가하고자 한다. 연구 재료 및 방법: 12마리의 웅성 가토 두개골에, 6 mm 직경의 골 결손부를 4개씩 형성하였다. 각각의 결손부는 5가지 중 하나의 차폐막으로 덮여졌다; No-membrane, Collagen, PLGA, HA-coated-PLGA, HA-PLGA/PLGA. 4주, 8주, 그리고 12주 후 두개골을 절단하여H-E 염색한 후 조직학적 분석을 하였다. 결과: 본 연구에서, 차폐막을 사용하지 않은 군에서 골형성은 12주 후에 나타났으며, 골 결손부를 일부 채우고 있었다. 신생골은 하방의 뇌경막을 따라 형성되었고 결손부의 상부는 결합조직과 지방으로 채워져 있었다. 콜라겐 차폐막인 $Ossix^{TM}$는 4주 후부터 신생골을 보였으며 신생골은 차폐막을 따라 형성되어 있었고 12주 까지 차폐막이 유지되었다. PLGA, HA-coated-PLGA, HA-PLGA/PLGA는 4주 후부터 골 재생을 보이고 8주 후에 결손부를 전반적으로 채우고 있다. 12주에는 기존 골과 구분이 되지 않으며 잘 융합되어 있음을 알 수 있다. 차폐막은 4주 후부터 명확히 구분되지 않고 흡수되어 있었다. 결론:PLGA와 HA-coated-PLGA, HA-PLGA/PLGA는 대조군에 비해 골의 형성이 빠르고 성숙 또한 빠르게 나타났으나, HA의 적용에 따른 차이를 보이지 않았으며 4주 후부터 흡수되어 차폐막으로써 임상에서 사용하기 위해서는 흡수기간을 연장하여 조절 가능하도록 더 많은 연구가 필요할 것으로 생각된다.

Purpose: The objective of the present study was to histologically evaluate durability and bone regeneration capacity of new synthetic membranes in comparison to clinically available collagen membrane. Material and methods: To the skulls of 12 rabbits, we created 4 bone defects of 6 mm in diameter on each of them. Each of defects were covered with at least one of 5 membranes; No membrane, Collagen ($Ossix^{TM}$), PLGA, HA-coated-PLGA and HA-PLGA/PLGA. After 4, 8, 12 weeks, we cut the skulls and dyed with H-E. And then, the histologic observation was done. Results: In current study, the control group which did not use the membrane showed bone regeneration at 12 weeks and covered the bone defect partially. New bones were formed through the underneath of endocranium, and the upper defect was filled with connective tissues and fats. Collagen membrane ($Ossix^{TM}$) showed new bones after 4 weeks, and they were formed through the membrane which maintained until 12 weeks. PLGA, HA-coated-PLGA, HA-PLGA/PLGA showed bone regeneration after 4 weeks and after 8 weeks, they mostly filled defects. At 12 weeks, we could find new bones and previous bones almost look alike and also, they united well. Membranes were unnoticeable after 4 weeks and were absorbed. Conclusion: Bone formation and maturation of PLGA, HA-coated-PLGA and HA-PLGA/PLGA were faster than the control group. They showed no difference on the application of HA and after 4 weeks, they were absorbed.

키워드

참고문헌

  1. Ozimeric N, Bal B, Oygur T, Balos K. The effect of a collagen membrane in regenerative therapy of two-wall intrabony defects in dogs. Periodontal Clin Investing 2000;22:22-30.
  2. Dupoirieux L, Pourquier D, Picot MC, Neves M. Comparative study of three membranes for guided bone regeneration of rat cranial defects. Int J Oral Maxillofac Surg 2001;30:58-62. https://doi.org/10.1054/ijom.2000.0011
  3. Shive MS, Anderson JM. Biodegradation and biocompatibility of PLA and PLGA microspheres. Adv Drug Deli Rev 1997;28:5-24. https://doi.org/10.1016/S0169-409X(97)00048-3
  4. Yoo HS, Lee EA, Yoon JJ, Park TG. Hyaluronic acid modified biodegradable scaffolds for cartilage tissue engineering. Biomaterials 2005;26:1925-133. https://doi.org/10.1016/j.biomaterials.2004.06.021
  5. Nam YS, Yoon JJ, Park TG. A novel fabrication method for macroporous scaffolds using gas foaming salt as porogen additive. J Biomed Mater Res 2000;53:1-7. https://doi.org/10.1002/(SICI)1097-4636(2000)53:1<1::AID-JBM1>3.0.CO;2-R
  6. Burg KJL, Porter S, Kellam JF. Biomaterials development for bone tissue engineering. Biomaterials 2000;21:2347-59. https://doi.org/10.1016/S0142-9612(00)00102-2
  7. Gunatillake PA, Adhikari R. Biodegradable synthetic polymers for tissue engineering. Eur Cell Mater 2003;20:1-16.
  8. Ishaug SL, Crane GM, Miller MJ, Yasko AW, Yaszemski M, Mikos AG. Bone formation by three-dimensional stromal osteoblast culture in biodegrable polymer scaffolds. J Biomed Mater Res 1997;36:17-28. https://doi.org/10.1002/(SICI)1097-4636(199707)36:1<17::AID-JBM3>3.0.CO;2-O
  9. Ochi K, Chen G, Ushida T, Gojo S, Segawa K, Tai H, Ueno K, Ohkawa H, Mori T, Yamaguchi A, Toyama Y, Hata J, Umezawa A. Use of isolated mature osteoblasts in abundance acts as desiredshaped bone generation in combination with a modified poly DL-lactic-co-glycolic acid (PLGA) -collagen sponge. J Cell Physiol 2003;194:45-53. https://doi.org/10.1002/jcp.10185
  10. Kim SY, Kanamori T, Boumi Y, Wang PC, Shinbo T. Preparation of porous poly(D,L-lactide) and poly(D,L-lactide-co-glycolide) membranes by a phase inversion process and investigation of their morphological changes as cell culture scaffolds. J Appl Polym Sci 2004;92:2082-92. https://doi.org/10.1002/app.20144
  11. Toole BP. Hyaluronan in morphogenesis. Semin Cell Dev Biol 2001;12:79-87. https://doi.org/10.1006/scdb.2000.0244
  12. Lee CT, Lee YD. Preparation of porous biodegradable poly(lactide- co-glycolide)/hyaluronic acid blend scaffolds: characterization, in vitro cells culture and degradation behaviors. J Mater Sci Mater Med 2006;17:1411-20. https://doi.org/10.1007/s10856-006-0617-5
  13. West DC, Kumar S. The effect of hyaluronate and its oligosaccharides on endothelial cell proliferation and monolayer integrity. Exp Cell Res 1989;183:179-96. https://doi.org/10.1016/0014-4827(89)90428-X
  14. Marinucci L, Lilli C, Baroni T, Becchetti E, Belcastro S, Balducci C, Locci P. In vitro comparison of bioabsorbable and non-resorbable membranes in bone regeneration. J Periodontol 2001;72:753-9. https://doi.org/10.1902/jop.2001.72.6.753
  15. Bergsma JE, de Bruijn WC, Rozema FR, Bos RR, Boering G. Late degradation tissue response to poly(L-lactide) bone plates and screws. Biomaterials 1995;16:25-31. https://doi.org/10.1016/0142-9612(95)91092-D
  16. Bostman OM, Pihlajamaki HK, Partio EK, Rokkanen PU. Clinical biocompatibility and degradation of polylevolactide screws in the ankle. Clin Orthop Relat Res 1995;320):101-9.
  17. von Arx T, Nina Broggini N, Jensen SS, Bornstein MM, Schenk RK, Buser D. Membrane durability and tissue response of different bioresorbable barrier membranes:A histologic study in the rabbit calvarium. Int J Oral Maxillofac Implants 2005;20:843-53.

피인용 문헌

  1. Biocompatibility and resorption pattern of newly developed hyaluronic acid hydrogel reinforced three-layer poly (lactide-co-glycolide) membrane: histologic observation in rabbit calvarial defect model vol.18, pp.1, 2014, https://doi.org/10.1186/2055-7124-18-12