참고문헌
- R. Nussbaum, Periodic solutions of some nonlinear autonomous functional equations, Ann. Mat. Pura Appl., 10(1974), 263-306. https://doi.org/10.1007/BF02417109
- M. Baptistiini, P. Tboas, On the existence and global bifurcation of periodic solutions to planar differential delay equations, J. Differential Equations, 127(1996), 391-425. https://doi.org/10.1006/jdeq.1996.0075
- J. Hale, S. Lunel, Introduction to Functional Differential Equations, in: Appl.Math. Sci., vol. 99, Spring-Verlag, New York, 1993.
- J. Wei, Q. Huang, Global existence of periodic solutions of linard equations with time delay, Dynam. Contin. Discrete Impuls. Systems Ser. A, 6(1999), 603-614.
- T. Zhao, Y. Kuang and H. Smith, Global existence of periodic solutions in a class of delayed Gause-type predatorCprey systems, Nonlinear Anal., 28(1997), 1373-1394. https://doi.org/10.1016/0362-546X(95)00230-S
-
L. Erbe, K. Geba, W. Krawcewicz and J. Wu,
$S^1$ -degree and global Hopf bifurcations, J. Differential Equations, 98(1992), 277-298. https://doi.org/10.1016/0022-0396(92)90094-4 - W. Krawcewicz, J. Wu and H. Xia, Global Hopf bifurcation theory for considering fields and neural equations with applications to lossless transmission problems, Canad. Appl. Math. Quart., 1(1993), 167-219.
- W. Krawcewicz, J. Wu, Theory and application of Hopf bifurcations in symmetric functional differential equations, Nonlinear Anal., 35(1999), 845-870. https://doi.org/10.1016/S0362-546X(97)00711-6
- S. Ruan, J.Wei, Periodic solutions of planar systems with two delays, Proc. Roy. Soc. Edinburgh Sect. A, 129(1999), 1017C1032.
- Y. Song, J.Wei and H. Xi, Stability and bifurcation in a neural network model with delay, Differential Equations Dynamic Systems, 9(2001), 321-339.
- Y. Song, J.Wei, Local and global Hopf bifurcation in a delayed hematopoiesis, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 14(2004), 3909-3919. https://doi.org/10.1142/S0218127404011697
- J. Wei, Y. Li, Hopf bifurcation analysis in a delayed Nicholson Blowflies equation, Nonlinear Anal., 60(2005), 1351-1367. https://doi.org/10.1016/j.na.2003.04.002
- J.Wei, Y. Li, Global existence of periodic solutions in a Tri-Neuron Network model with delays, 198(2004), 106-119. https://doi.org/10.1016/j.physd.2004.08.023
- X. Wen, Z. Wang, The existence of periodic solutions for some models with delay, Nonlinear Anal. RWA, 3(2002), 567-581. https://doi.org/10.1016/S1468-1218(01)00049-9
- J. Wu, Symmetric functional differential equations and neural networks with memory, Trans. Amer. Math. Soc., 35(1998), 4799-4838.
- S. Jung, On an asymptotic behavior of exponential functional equation, Acta Mathematica Sinica, English Series, 22(2006), 583-586. https://doi.org/10.1007/s10114-005-0557-x
- K. Jun, H. Kim, Stability problem for Jensen-type functional equations of cubic mappings, Acta Mathematica Sinica, English Series, 22(2006), 1781-1788. https://doi.org/10.1007/s10114-005-0736-9
- L. Hei, J. Wu, Existence and Stability of Positive Solutions for an Elliptic Cooperative System, Acta Mathematica Sinica, English Series, 21(2005), 1113-1120 . https://doi.org/10.1007/s10114-004-0467-3
- S. Ruan, Absolute stability, conditional stability and bifurcation in Kolmogorov-type predatorCprey systems with discrete delays, Quart. Appl. Math., 59(2001), 159-173. https://doi.org/10.1090/qam/1811101
- J. Wei, S. Ruan, Stability and bifurcation in a neural network model with two delays, Phys. D, 130(1999), 225-272 . https://doi.org/10.1016/S0167-2789(99)00009-3
- S. Nakaoka, Y. Saito and Y. Takeuchi, Stability, delay, and chaotic behavior in a Lotka-Volterra predator-prey system, Mathematical Biosciences and Engineering, 3(2006), 173-187.
- X. He, Stability and delays in a predatorCprey system, J. Math. Anal. Appl., 198(1996), 355-370. https://doi.org/10.1006/jmaa.1996.0087
- W. Wang, Z. Ma, Harmless delays for uniform persistence, J. Math. Anal. Appl., 158(1991), 256-268. https://doi.org/10.1016/0022-247X(91)90281-4
피인용 문헌
- Global Hopf Bifurcation for a Predator–Prey System with Three Delays vol.27, pp.07, 2017, https://doi.org/10.1142/S0218127417501085