DOI QR코드

DOI QR Code

A New Class of Hermite-Konhauser Polynomials together with Differential Equations

  • 투고 : 2009.09.16
  • 심사 : 2010.01.27
  • 발행 : 2010.06.30

초록

It is shown that an appropriate combination of methods, relevant to operational calculus and to special functions, can be a very useful tool to establish and treat a new class of Hermite and Konhauser polynomials. We explore the formal properties of the operational identities to derive a number of properties of the new class of Hermite and Konhauser polynomials and discuss the links with various known polynomials.

키워드

참고문헌

  1. Andrews, L. C., Special functions for engineers and applied mathematicians, MacMillan, Now York, 1985.
  2. Bin-Saad, Maged, G., Associated Laguerre-Konhauser polynomials quasi-monomiality and operational Identities, J. Math. Anal. Appl., 324(2006), 1438-1448. https://doi.org/10.1016/j.jmaa.2006.01.008
  3. Dattoli, G., Pseudo Laguerre and pseudo Hermite polynomials, Rend. Mat. Acc. Lincei., s. 9, v. 12, (2001), 75-84.
  4. Dattoli, G., Mancho, A.M., Quattromini, A. and Torre, A., Generalized polynomi- als, operational identities and their applications, Radiation Physics and Chemistry, 57(2001), 99-108.
  5. Dattoli, G., Lorenzutta, S., Maino, G. and Torre, A. Generalized forms of Bessel poly- nomials and associated operational identities, J. Computational and Applied Math., (1999), 209-218.
  6. Dattoli, G., Lorenzutta, S., Maino, G. and Torre, A., Generalized forms of Bessel functions and Hermite polynomials, Ann. Numer. Math., 2(1995), 221-232.
  7. Dattoli, G. and Torre, A., Theory and applications of generalized Bessel functions, Arance, Rome, (1996).
  8. Dattoli, G. and Torre, A., Operational methods and two variable Laguerre polynomials, Acc. Sc. Torino-Atti Sc. Fis., 132(1998), 1-7.
  9. Dattoli, G. and Torre, A., Exponential operators, quasi-monomials and generalized polynomials, Radiation Physics and Chemistry, 57(2000), 21-26. https://doi.org/10.1016/S0969-806X(99)00346-1
  10. Dattoli, G., Torre, A. and Carpanese, M., Operational rules and arbitrary order Her- mite generating functions, J. Math. Anal. Appl., 227(1998), 98-111. https://doi.org/10.1006/jmaa.1998.6080
  11. Dattoli, G., Torre, A. and Mancho, A. M., The generalized Laguerre Polynomials, the associated Bessel functions and applications to propagation problems, Rad. Phy.Chem., 59(2000), 229-237. https://doi.org/10.1016/S0969-806X(00)00273-5
  12. Erdelyi, A., Magnus, W., Oberhettinger, F. and Tricomi, F. G., Higher Transcenden- tal Functions, Vol. I, McGraw-Hill, New York, Toronto and London, 1955.
  13. Goyal, G. K., Modified Laguerre polynomials, Vijnana Parishad Anusandhan Patrika, 28(1983), 263-266.
  14. Konhause, J. D. E., Bi-orthogonal polynomials suggested by the Laguerre polynomials, Pacific J. Math., 21(1967), 303-314. https://doi.org/10.2140/pjm.1967.21.303
  15. Rainville, E. D., Special functions, Chelsea Pub. Company, New York , 1960.
  16. Spencer, L. and Fano, U., Penetration and diffusion of X-rays, Calculation of spatial distribution by polynomial expansion, J. Res. Nat. Bur. Standards, 46(1951), 446-461. https://doi.org/10.6028/jres.046.047
  17. H. M. Srivastava, Some biorthogonal polynomials suggested by the Laguerre polyno- mials, Pacific J. of Math., Vol.98, No.1, (1982), 235-250. https://doi.org/10.2140/pjm.1982.98.235
  18. Srivastava, H. M. and Karlsson R. W., Multiple Gaussian Hypergeometric Series, Halsted Press, Bristone, London, New York, 1985.