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ABSTRACT. It is shown that an appropriate combination of methods, relevant to opera-
tional calculus and to special functions, can be a very useful tool to establish and treat
a new class of Hermite and Konhauser polynomials. We explore the formal properties of
the operational identities to derive a number of properties of the new class of Hermite and
Konhauser polynomials and discuss the links with various known polynomials.

1. Introduction

Various types of generalized polynomials, for example, Bessel polynomials, La-
guerre polynomials, Laguerre-Bessel polynomials, Laguerre-Hermite polynomials,
Bessel-Hermite polynomials and Laguerre-Konhauser polynomials have been pro-
posed during the last years (see [2-10]). In [6] Dattoli et. al. introduced two Laguer-
re polynomials of two variables of the forms

1.1 L 'y o

(1.1) 1 n’a(yvz)—”"; Kl(n—E)T(a+k+1)’
n —1)kpn—kyk

1.9 L(m) — ! ( .

(1.2) n (Y, 2) = (m+n) kz=o Kl(n— k)l(m + k)]

Clearly

(1.3) F(“”:,l)(_x) 1Lna(=2,1) = LM (),

(14) Ly (,y) = y LI (x/y),

where L,(la)(:v) is the associated Laguerre polynomials [15,p.200(1)].
Also, these so-called modified Laguerre polynomials L p ¢ n(x) were introduced by

Received September 16, 2009; accepted January 27, 2010.

2000 Mathematics Subject Classification: Primary 33.

Key words and phrases: Hermite polynomials; Laguerre polynomials; Konhauser polyno-
mials; exponential operators; operational identities; monomiality principle.

237



238 Maged Gumaan Bin-Saad

Goyal [13] in the form

b™(¢)n . ax
(1.5) Lopen(z) = . 1F1 [—n,c, T] ,

where (), = F?‘&T ) T': Gamma function, which is a slight variant of the associ-

ated Laguerre polynomials L' In [10] the two variable Hermite -Kampé de Fériet

polynomials are specified by the series

[

w3

Ik om—2k

2"x
k=0

and by the operational rule(see [5]):

(1.7) e :7 {z"} = H,(z, 2).

From (1.6) it follows that
o () ()2

M — oy~ (@)

(1.8) H,(2z,—1) =n!
k=0

where H,,(x) being ordinary Hermite polynomials. A further interesting set of poly-
nomials is provided by the Laguerre-Hermite polynomials ; H(x,y) which defined
by the series [11, p.233(41)]:

(3]
(1.9) LH(z,y) =n!
r=0

(_1)T'Ln72r(ma y)
2rpl(n —2r)!

where L, (x,y) are Laguerre polynomials of two variables [8]:

n (1) kyn—F ok
(1.10) Ly(z,y) = n!;) ((k.))z(yn_k).

For the purpose of this our present study, we recall here the following explicit
expression for the Konhauser polynomials Z%(x; k) [14]:

T(kn+a+1) ¢ n xks
1.11 Z¥Nw k)= —7— —1)° e TrE—— -1,k=1,2,..
1) 23 =S (| gy @ > k= 12

which for £ = 1, these polynomials reduces to the Laguerre polynomials Lﬁj’“) (z) and
their special case when k = 2, were encountered earlier by Spencer and Fano[16]
in certain calculation involving penetration of gamma rays through matter. In this
paper we exploit operational techniques combined with the monomiality principle to
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introduce and discuss a new class of Hermite-Konhauser polynomials, which provide
a further generalization of a number of known polynomials including all polynomials
mentioned above.

2. Hermite-Konhauser polynomials

Let us consider the generating relation

(2.1) F(z,y; 2|t) = exp [zt (1 - i[);’“) - xtQ} {F(jil)} ,

where £ = 1,2,...;a > —1 and ﬁy denotes the derivative operator and ﬁy_l its
inverse (see [8]). Expressing the exponential function in series and applying the
result (see e.g. [1]) :

Ia+1)

Dn a _ a—n >0 A
2L 7F(a—n+1)x , a>0ne/”s,

we can conclude that

S+T{E P syks+a n+2r
el = {33 R e

n=0 \s=0r=0

Finally, the change of index n = n — 2r leads to

Lok 2
(2.2) exp{zt(l—ZDy )—xt]{ a+1} ZkH(a)xy,

n=0

where kHﬁa)(x, y; z) is the Hermite- Konhauser polynomials defined by

[ 9+r r k9+a n—s—2r

2.3 H( =n! “ '
(2.3) k (2,y;2) =nl g ; Slrl s=2r)T'(ks+a+1)

In view (1.8) and (1.11), it is easily seen that

(2.4) " HO (2,0; 2) = Hy,(2/2/x).

y T(kn+a+ 1)
z"n!

(2.5) HM(0,y;2) = ZS(y/ V= k),

It may of interest to point out that the series representation (2.3), in particular,
yields the following relationships:

y T(kn+a+1)
n!

(2.6) RHI(0,y51) = Z2(y3 k),
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(27) (=D H (0, ~y:2) = 1Lna(y, 2),

(29 (o) = T 00 0,y 2) = L),
(2.9 g R 0,:2) = 10,2,
(2.10) yO Rt mo0,4:1) = L),
(2.11) 1 HO (—2,052) = Hy (2, ),

(212) v HO(, 5 2) = LH 5, 2),

(2.13) VHO(1,0;22) = H,(2).

Moreover, the psedu Laguerre polynomials L, (x,y;k,j) and the psedu Hermite
polynomials A, (z,y; k, j) introduced recently by Dattoli et al.(see [3]) are a special
cases of our polynomials as given below:

)szn syks—i-j

Ln 9 ;k7.7
(ks 1) L)

(2.14) H9(0,y;2) = n'z S0

For the purpose of this work, we introduce the following obvious straightforward
extension of (2.14)

l)szn syks+a

2.1 =

(2.15) Lny, 2k, ) nzs'n—s)'l"(ks—l—a—i—l)
Clearly,

(2.16) Lu(y, 7k, a) = e H{M (0,45 2).

The relevant generating function for the polynomials L,,(x, y; k, @) can be obtained
by the method suggested in [3], thus getting

(2.17) ZL y, 2 k, o) —yo‘eZtC’ (y*t: k),
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where C, (z; k) being the o order Tricomi function defined by [7]

oo

e
Cal@ib) =2 st a ¥ D'

We must emphasize that the polynomials in (2.14) and (2.15) are a generalized
forms of Konhauser polynomials defined by (1.11) and indeed we have

y T (kn+a+1)

(2.18) ZX(y, k) = ]

L,(y, 1k, ).

Taking into account the nature of the series representation (2.3), we can write the

(a)(

polynomials Hy ' (z,y; z) in the more elegant forms:

)2y 28, (y) /% k)
2.19 H)( = n! — 7
(2.19) WY (2, y;2) = 0! Z r'Fkn—ri+a+1) ’
n k:rJraH 2
(2.20) WH) (2, 2) = nl Z )"y (2] f)7
e Tu\/;r(n—r)'r(kwrantl)
n r kr+O¢H ( —.’IJ)
2.21 H = Dy .
( ) k (z,y;2) = ”Z '(n—r)T(kr+a+1)’
(2]
—1)T$TLn—2r(y z k a)
2.22 HE () = 30 ¢ T
( ) kL1y (:c,y,z) nr:O T‘!(?’l—z'f")!

From the series representation (2.3) and the fact that

Db =T

it follows that
(2.23)

r, kst+a

_ 22) n (7] s+r _ n—s—2r

z — = 3'7"71—3—2T)'F(k5—|—0z—|—1)

from which we find the following link between the polynomials kH,(La) (z,y;z) and
the Legendre polynomials P, (x) [15, pp.167]:

o (s e LY
(2.24) RH (ZDZ ad 23@) - n'z; rlin—s)T(ks +a+1)

S
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where
[zl 2 kon—2k
(z% = 1)ka™
P, =n! .
(@) =n 2 92K (k1) (n — 2k)!
Obviously,
(@ ((L—=2%) ~ 4 n
(2.25) W (D21, 0:22 ) = 2" Py (o).

3. Operational methods and monomiality principle

First of all, since

~ _ e =~ _ N—ks, o ks+a
D2r2n s Ln—s 2r Dszn 2r D y s
= == and Y

(n—s)!  (n—s—2r) (n—2r) F(?:)H—l) P(a+1)

we infer, from the series representation (2.3) the identities

(@) (. s 2) = e~ Y2t e

(31) an (%,y, Z) € o {F(kn—i—a—&—l)Zn(y/ﬁ’k) )
oo n/2, a

(2) o) = e300 { Y (/208) |

(33) kHT(La) (l’,y; Z) = eiﬁby_k {F(Ozj—i—l)Hn(Z’ I)} ’

2
(3.4) kaf‘)(ac,y; z) = e o2 {Ln(y, z;k, )} .

The operational re presentations in (3.1) to (3.4) yield an idea of how further prop-

erties for the polynomials kHy(La) (x,y;2) can be established. In the forthcoming
sections we will show how to exploit the exponential operators in (3.1) to (3.4) in
wider context involving the derivation of generating functions and expansions for

the polynomials kHﬁa) (z,y; z) from the corresponding known results of the classical
Hermite polynomials, Konhauser polynomials, Hermite-Kampé de Fériet polynomi-

als and psedu Laguerre polynomials.
Secondly, according to the identity

Drznfsfr Zn7572r
3.5 z =
(8:5) (n—s—r) (n—s—2r)0
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we find from (2.3) that

n—

o0 -5 5 Sk g (0,

which further can be handled to get the symbolic relation:

(3.7) WH ) (2,5 2) = (1 — D,z = z_lﬁ;k)n {Znya} )
INa+1)

or equivalently, in the more compact form

(3.8) kH,(LO‘)(x,y;z) = (z—xf)z _Dy_k)n{f‘(ci/(jl—l)}

Similarly, the series representation (2.3) can be exploited to derive the following
operational representations

~ 14 -1 1 =~ n Znya
. H (2, y;2)= [1—2D.2'(1—=D* 1—-=D7*
(3.9)  wH;(z,y;2) [ Tz ( P’ g’ Tla+1)f’

and

(3.10) R H) (z,y;2)= {1iDy’“(lszzl>_1]n(1xDzzl)"{F’(Z;fl)}.

Next, in view of the relationships (2.4), (2.5), (2.11) and (2.14). Equations (3.9)
and (3.10) can be further handled to get the following Rodrigues-type relations

]. A n
3.11 ——H, (2/2/x) = (1 f:vDZz*) FA
(3.11) e Ha(2/2V/) ="
(3.12) Loy, 2 k,a) = 1 Lpow i
. n ya 3 vy - P y I‘(a-|— 1) .
Further, according to the definition of Kampé de Fériet’s double hypergeometric se-

ries Fggg(see [18, Eq. 1.3(28)]) and identity (3.5), we can easily derive the follow-

ing explicit representation for the Hermite-Konhauser polynomials kH,(La) (z,y; 2):

(3.13)  RH{M(x,y;2)
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where A(k;A) denotes the array of k parameters %7 %7 s %, k > 1. Again,

we can rewrite the series representation (2.3) in the form

n—s—2r

s+27‘x z N—ks ya
(3.14) R H ) (x,y; 2 Z Z slr! Dy {F(O“Fl)}7

which by exploiting the same procedure leading to (3.7) yields the following direct

connection between the polynomials , H. 7(;1)(

(3.15) WH ) (2,5 2) = <2f (1 - iD;’“)) {m}

Furthermore, from the identity in (3.2) and the identity in (3.4) in conjunction with
(3.11) and (3.12), we get the following new relations

x,y; z) and the classical Hermite H,,(z):

(3.16) kH(a)(m Yy z) = e= 3Dy " <1 —zD z_l)n 2y
. n R R z F(OL+1) 9

2 1 . n Znya
3.17 H (2,y;2) =e o2 (1—-D;*) {2 1.
(317) N e U IR ey
Alternatively, by combining the identity in (3.1) and (3.4), we find that
52 n, o
3.18 () )= e Dyt ) 2 Y L
( ) k n (x’y7 ) e o F(Oé + 1)

At this point let us stress that, the schema suggested in this section can be applied to
find other operational relations connecting the polynomials x H, T(La) (x,y; z) with other
polynomials presented in section 1. For instance, for the polynomials 1L, (y, 2)

defined by (1.1) we find the following operational formulas

0% g Al
(3.19) G (@,y32) = (~1)%7 52 D {1 Lna(= Dy "y, 2) }

(3.20) 1 Loy, 2) = (1 — if)y—ly {I‘(Z:fl)} .
(@)

The two series and three variables Hermite-Konhauser polynomials y Hy,
are quasi-monomials under the action of the multiplicative operator

T,Y;2)

(3.21) M =z—2zD,— D",

and the derivatives operators

(3.22) Py = ——y* * DDk,
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- 0
A A1 0
—_ _D-1 =2
(3.24) Py=-DI'o.

According to the quasi-monomiality properties, we have

(3.25a) M H (2,5 2) = 1 H, (2,95 2),
(3.25b) plkHT(f‘)(x,y; z) = n;ngloi)l (z,y; 2),
(3.25¢) ngHT(f‘)(m,y; z) = n;ngloi)l (z,y; 2),
(3.25d) Pg;cHT(f‘)(m,y; z) = n;ngloi)l (z,y; 2),
(3.25¢) % (151 + B+ 153) WH O (@, 2) = nHY, (2, 2).

Therefore, the identities

(3.26) PIMGH (2,5 2) = (n+ D) H (2,95 2),
(3.27) MPypH(™ (z,y;2) = n HS (2, y; 2),
(328) Mp3kH’r(La) (1'7 Y3 Z) = nkH’r(La) (iL’, Y3 Z)

in differential forms give us

{y <2x§z — z) f)’y”l + (k—a) <2x§z — z) lA)l; + yDy — (o + kn)

(3.29) WHY (2,y;2) = 0

0? 0 Ap 0

—_— -z — (a) 7)) =
(3.30) K?zazz 25 + n> Dy + 82} cH Y (x,y;2) =0

245

2 2 2 2
(3.31) [(z 0 +22 25090 + 0 )D"’ 0 ]nga)(x,y;z):o.

n@ Y 9202

0x0z or x%@
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It can also be easily checked that kala)(;E, y; z) are the natural solution of

02 0
(3.32) @kaf‘)(m, Yiz) + %kHéa)(% y;z) = 0.

It is important to note that equations (3.22) and (3.32) allow us to establish another
multiplicative operator M* of the form

(3.33) M* =z+2z—D;*— D;F

together with the property

N H (2,3 2) = 1 H, (2,93 2).

Moreover, the derivative operators in (3.22) to (3.24) can be further handled to get
the new differential relations

0 1 0 o
3.34 S HO (g ) = — g kAL ka2 (@) (g )
(3.34) 55 < (z,y;2) Y ag” gyt (z,y;2),
0 A1 0
(3.35) fazkaf)(x,y; z) = —Dz_lfaxkffé‘“) (2,y;2),
A 1 0 1 0 oF
) —D71 H(a) . _ —,a—k+1 k—a H(a) -2).

Next, regarding the Lie bracket [ , ] defined by [A, B] = AB — BA, we led to

(3.37a) [Py, M¥) H S (2,y; 2) = [Py, M) HS (2,y; 2) = 1 H (2,3 2),
(3.37b) [Py, M*], HS (2,5 2) = [Po, M1 H (2,5 2) = 1 HL (2, 2),
(3.37¢) [Ps, M1 H ™ (2,5 2) = [Ps, M HS (2,93 2) = 1 H (2, y; 2).

From the lowering operators ]51, P, and P37 we can define operators playing the role
of the inverse operators P; ', Py ' and P; ' (see [4, Equation (15)]). Thus, we get

(3.38) Pt =D !

z )

(3.39) Pyl = —ky*D,ty~ >tV Dk

)

(3.40) P;t=-D;'D,,
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and they satisfy

()
L o . o . o wH 1 (z,y; 2
(3:41) PTUHY (w,y;2) = By WH (v 2) = Py W HY )(x,y;Z)"alliLU)
Clearly, we have
(3.42) PP W H @ yi2) = PPt (B (%) }

Also, from definition (2.3), we find that

0 a
(3.43a) 871:,6]{7(1@)(35, y;2) = —n(n — 1)kH7(l_)2(m,y; z),
(3.43b) a—ka,(f‘)(x, y;2) = R HY D (2,93 2),
0
(3.43¢) @kﬂﬁa)(w,y; 2) = e H\Y) (2,y: 2).

In general, we have

(34da)  DPH (2.y:2) = (~1)™n(n —1) - (n— 2m + DH,, (2,4:2),

n—2m

(3.44b) ﬁ;”kHr(La)(x’y; 2) = L HO ™™ (2,55 2),
(Bdle)  DIHO (wyiz) = n(n—1)- - (n - m o+ DeH, (@,y:2).

Similarly, we can show that

(3.45a) D;™H\ (x,y;2) =

x

L (o)
H :
(n—|—2m)(n—|—2m_1)...(n+1)k n+2m(m,y,z),

(3.45b) Dy H (w5 2) = W HS ™ (2,95 2),

. 1
3.45 DM H ) 2,y 2) = H :2).
( C) z kiln (ﬂf,y,Z) (n—l—m)(n—i—m—l)(n—i—l)k n+m(x7y7z)
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4. Generating functions via operational identities

In this section we show how readily new generating functions for the polyno-
mials kHT(f‘)(z,y; z) can be derived from the operational re presentations of the
polynomials kH,(la)(:c, y;z). First, in the identity (3.2) multiply throughout by %,
sum and then employ the well-known generating function [15]

(4.1) exp 22t — t2 Z H,(
to get

In the same manner, from the operational 1dent1ty in (3.4),(see (2.17)) and (3.8)
one can derive the following generating functions

n

o0

R o "
(4.3) yre BT Coly i k) = Yk HI (2,952)
n=0
and
zt—atZ —tDF 2"y” — .- () .
(44) 6( o v ){F(Oé—‘rl)}_nz_;)an (xvyvz)n!a

respectively. Again, by starting from equation (3.8) multiplying throughout by ¢"
and exploiting the previous outlined method, we can show that

—(y/k)*t
(1—zt+atD,)

(6%

Y
D(a+1)(1 — 2t + xtD,)

= Z WHY (2, y; 2)t
n=0

The previously outlined procedure offers a useful tool for the derivation of other

(4.5)

1 | Ak o+ 1);

families of generating functions for the polynomials WH (x,y; z). For instance, let
us consider the generating relation

o0

t'n,
(4.6) flz,y,w,u; z,0|t) = ZkH @) (z,y; 2 H(ﬂ)(w u; v)—'

which according to Equations (3.18) and (4.2) yields the following bilinear generat-
ing function

O~y 07 0~ 9 2"yeub
oo . n
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In [2] the following Laguerre-Konhauser polynomials have been introduced

n o n-—s _1\s+r. .atr, B+ks
(@,8) o (1) raetry
(48) kL, y) = ! ; ; strlin —s —r)!T(a+r+ 1)[(ks+ B+ 1)

together with the operational identity

(4.9) (1 - D' - Ey_k)n {F(a +$1(;lgifﬂ 1) } = e Li7 (@),

Let us consider the generating relation

o0

« tn
(4.10) Fla,y,w,u; 2,0t =Y pH )(Ivy;Z)pL%ﬁ’”)(wm)H

n=0

Now, directly from (3.8) and (4.9) by employing the previously outlined method
leading to the bilinear generating function, we obtain from (4.10) the following
bilateral generating function

(4.11) exp [t (Z — 2D, — f)y—k> (1 _ f);l _ D;p):| {F ywlu? }

(a+DIB+1I'(v+1)

oo tn
= T H ) (2, 2), L) (w,u) =
n:

n=0

5. Expansions

Let N=z—2D, — D;k, then from (3.8) we can state that
Y - n
5.1 ~ NP —"— ) = E —1)° H® ;2)2" 0.
( ) [Z } {I‘(a—l—l)} S:O( ) (S)k s (l‘,y,Z)Z

Alternatively, from (3.21) by applying the same method leading to (5.1), we find
that

62w s b= e (0w e

s=0

Next, consider the expression:

(5.3) Fay;2) = [Mﬂgzr {r(jin}
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which in view of (3.8) and (5.2), yields the expansion

(5.4) [M+xir{r(zil)} =1 H\" (,y; )

Sy () )eema @0)

s=0r=0

Further, consider the known summation formula [17,p.248(3.28)]:

o (y; U\ s (w; k) u
(5.5) p(anJ(rakll) - (E)k Z:O s!l“(ki —ks+a+1) {(w)k - 1}

S

Upon replacing v and w in (5.5) by ’CL\/E and 5% respectively, multiplying both sides
by (nlu®w®z™ ) and then applying the operational identity in (3.1), we obtain the
following explicit expansion

n

an! u\ kn 1
) H(®) Ly (Y § il
(5.6) RHy (2, y;2) Ia+1) (w) g s!

—n:—;—n+s; unk s
R s () | () 1)
- —’I’L,A(k‘;a =+ 1);

Moreover, the definition (2.3), in view of Taylor’s formulas

S D) = S+ 2)
m=0 :
and -
S D b o) = ),
m=0

yields the following interesting addition and multiplication formulas:

(5.72) D) B (2, y; 2) = L HO (2 + w, y; 2),
(5.7b) e Du HE) () 2) = nHE (2, y + w; 2),
(5.7¢c) "D H (2, 2) = pH) (2,55 2 + w),

(5.8a) (=0 Dey (@) (3 g 2) = L H) (2w, y; 2),
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(5.8b) e DWDy B (2, 2) = L H (2, yw; 2),
(5.8¢) ew=DD= H(O (2, 2) = | H (@, y; 20).

Similarly, the use of the inverse operator D=1 allows to conclude

e mo
(5.9a) > l;, D™ {kH,S“‘Qm) (z,y; z)} = RH (2,y + w; 2),
m=0 ’
3] (—n)am®™ o [ w “
(5.9b) — o D {anfzm(x»y;Z)} =k H, (2,932 + w),
m=0 :
oo 1— m
a3 U o ey} e ),
m=0 ’

Gaon) 3 el o £, gz} = B (o ),
m=0 :

For w = —z(w = —y,w = —z), the results (5.7a), (5.7b), (5.7¢), (5.9a) and (5.9b)
would reduce immediately to curious results since z(y, z), does not appear on the
right-hand side of equations (5.7a), (5.7b), (5.7c), (5.9a) and (5.9b). Finally, let us
consider the expression

_ - mf[ ™V Am A—km . ™
(5.11) Q(x,y,z)—ng)(—l) (m>Dz D, {Hn_m(z,—x)an_,m(y,z,k,a)ﬂ}.

In view of the identity (see (1.6))
H,(z,z)= (1 + xﬁzz_l) {z"}

and upon using (3.12) one obtains by routine calculations

n

= 3o (1) 55 ot o

m=0 s=0 r=0

ﬁ?+rb;k(m+s) {ZnSTZml,m+rya }

INa+1)
On letting s — s —m and r — r — m, employing the Gaussian theorem
I'(c—a—b)(c)

2Fia,b;c; 1) = T(c—a)l(c—b)’

Re(c—a—b) > 0, Re(c) > 0,
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and
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simplify, we led to the desired result

512) 3 ei2) =31 ) D o) < Lo ) S |

m=0
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