DOI QR코드

DOI QR Code

Herbicidal Activity of Chrysophanic Acid in Semi-field Condition

천연물질 Chrysophanic Acid의 포장조건 제초 활성

  • Choi, Jung-Sup (Chemical Biotechnology Research Center, Korea Research Institute of Chemical Technology) ;
  • Jang, Hyun-Woo (Chemical Biotechnology Research Center, Korea Research Institute of Chemical Technology) ;
  • Seo, Bo-Ram (Chemical Biotechnology Research Center, Korea Research Institute of Chemical Technology) ;
  • Hwang, Hyun-Jin (Chemical Biotechnology Research Center, Korea Research Institute of Chemical Technology) ;
  • Kim, Jae-Deog (Chemical Biotechnology Research Center, Korea Research Institute of Chemical Technology) ;
  • Kim, Jin-Seog (Chemical Biotechnology Research Center, Korea Research Institute of Chemical Technology) ;
  • Chun, Jae-Chul (Department of Bioenvironmental Chemistry, Chonbuk National University) ;
  • Kim, Song-Mun (Department of Biological Environment, Kangwon National University)
  • 최정섭 (한국화학연구원 산업바이오화학연구센터) ;
  • 장현우 (한국화학연구원 산업바이오화학연구센터) ;
  • 서보람 (한국화학연구원 산업바이오화학연구센터) ;
  • 황현진 (한국화학연구원 산업바이오화학연구센터) ;
  • 김재덕 (한국화학연구원 산업바이오화학연구센터) ;
  • 김진석 (한국화학연구원 산업바이오화학연구센터) ;
  • 전재철 (전북대학교 생물환경화학과) ;
  • 김성문 (강원대학교 바이오자원환경학과)
  • Received : 2010.09.01
  • Accepted : 2010.10.22
  • Published : 2010.12.30

Abstract

Herbicidal activity and characteristics of chrysophanic acid were investigated in semi-field condition. At early and middle post-emergence, Trifolium repens appeared to be very susceptible to chrysophanic acid of $2,000{\mu}g\;mL^{-1}$. However, herbicidal activity of chrysophanic acid of $2,000{\mu}g\;mL^{-1}$ estimated by visual injury to Artemisia princeps was not caused considerable phytotoxicity. Also by foliar application, the concentration of crysophanic acid for effectively control to Polygonum aviculare was much higher than $2,000{\mu}g\;mL^{-1}$. Herbicidal activity of chrysophanic acid to Echinochloa crus-galli, Cypres difformis, Setaria viridis, Digitaria sangguinalis, Bidens tripartita by foliar application was more effective at concentration ranges from 4,000 to $6,000{\mu}g\;mL^{-1}$. These results suggest that chrysophanic acid demanded for higher than $2,000{\mu}g\;mL^{-1}$ to successful weed control in the field condition.

온실조건에서 제초활성물질로서의 가능성을 확인한 천연물 chrysophanic acid의 간이 포장조건에서의 잡초 방제력과 살초특성을 평가하여 실용화 가능성을 검토하고자 본 연구를 수행하였다. Chrysophanic acid $2,000{\mu}g\;mL^{-1}$ 처리에서 토끼풀 방제효과는 생육시기에 관계없이 매우 우수하였으나, 약제처리 2주후에는 재생되었다. Chrysophanic acid의 쑥에 대한 방제력은 다소 미흡하였으며, 마디풀은 $2,000{\mu}g\;mL^{-1}$ 이상의 농도에서 효과적으로 방제되었으나 동시에 잔디에 대한 약해도 발생하였다. 자연발생된 다양한 잡초에 대한 방제력이 매우 우수하였는데 특히 강피, 강아지풀, 바랭이 등에 대해서는 $6,000{\mu}g\;mL^{-1}$ 처리에서 100% 살초력을 보였고, $4,000{\mu}g\;mL^{-1}$ 처리에서도 80% 이상의 방제효과가 나타났다.

Keywords

References

  1. 김성문, 김희연, 황기환, 전익조. 2008. 긴병꽃풀(Glechoma hederacea) 정유의 제초활성. 한국잡초학회지 28(2):152-160.
  2. 김희연, 최해진, 유용만, 허수정, 임상현, 김진석, 김성문. 2003. 애기수영(Rumex acetosella L.)으로부터 새로운 살초활성물질 chrysophanic acid의 분리. 한국잡초학회지 23(4):301-309.
  3. 박태선, 권오도, 김창석, 박재읍, 김길웅. 1999. 한국 수도답에서 sulfonylurea 제초제에 대한 물옥잠 출현. 한국잡초학회지(별) 19(2): 71-73.
  4. 박태선, 이인용, 박재읍. 2003. 한국에서 제초제 저항성 장초 발생현황과 대책. 한국잡초학회지 23(1):1-10.
  5. 장현우, 서보람, 황현진, 김재덕, 김진석, 김성문, 전재철, 최정섭. 2010. 천연물질 chrysophanic acid의 채초활성. 한국잡초학회지 30(2):143-152.
  6. 조광연. 1998. 신농약 효능 검사 및 기반 기술 연구. 과학기술부 선도기술개발 사업 2단계 최종보고서. 901 p.
  7. 홍연규, 김정남, 이본춘, 항재복, 송석보, 박성태, 전민구, 김인섭. 2006. 곰팡이 유래 미생물제초제 스클레로티니아속균 BWC98-105균주의 클로버 방제효과. 한국잡초학회지 26(4):353-361.
  8. Bainard, L. D., and M. B. Isman. 2006. Phytotoxicity of clove oil and its primary constituent eugenol and the role of leaf epicuticular wax in the susceptibility to these essential oils. Weed Sci. 54:833-837. https://doi.org/10.1614/WS-06-039R.1
  9. Bayer, E., K. H. Gugel, K. Hagele, H. Hagenmaier, S. Jessipow, W. A. Konig and H. Zahner. 1972. Stoffwechselproduct von Mikroorganismen 98. Mitteilung(1) Phosphinothricin und phosphinothrithyl-alanyl-alanin. Helvetica Chimica Acta. 55:224-239. https://doi.org/10.1002/hlca.19720550126
  10. Copping, L., and S. O. Duke. 2007. Review : Natural products that have been used commercially as crop protection agents. Pest Management Sci. 63:524-554. https://doi.org/10.1002/ps.1378
  11. Duke, S. O., H. K. Abbas, T. Amagasa and T. Tanaka. 1996. Phytotoxins of microbial origin with potential for use as herbicides, in Copping LG (ed.), Crop Protection Agents from Nature : Natural Production and Analogues, Critical Reviews on Applied Chemistty, Vol. 35. Society for Chemical Industries, Cambridge, UK, pp. 82-113.
  12. Fukuda, M., Y. Tsujino, T. Fujimori, K. Wakabayashi and P. Boger. 2004. Phytotoxicity activity of middle-chain fatty acids I : effect on cell constituents. Pesticide Biochemistry and Physiol. 80:143-150. https://doi.org/10.1016/j.pestbp.2004.06.011
  13. Im, S. U., M. W. Park, M. J Yook and D.S. Kim. 2009. Resistance to ACCase inhibitor cyhalofopbutyl in Echinochloa. crus-galli var. crus-galli collected in Seosan, Korea. Kor. J. Weed Sci. 29(2):178-184.
  14. Lederer. B., T. Fujimori. Y. Tsujino, K. Wakabayashi and P. Boger. 2004. Phytotoxicity activity of middle-chain fatty acids II : peroxidation and membrane effects. Pesticide Biochemistry and Physiol. 80:151-156. https://doi.org/10.1016/j.pestbp.2004.06.010
  15. Liu, D. L.. and L. E. Christians. 1994. Isolation and identification of root-inhibiting compounds from corn gluten hydroysate on Lolium perenne. Hore. Sci. 32:243-245.
  16. Malkomes, H. P. 2006. Microbiological-ecotoxicological soil investigations of two herbicidal fatty acid preparation used with high dosages in weed control. Umwelwissenschaften Schadstoff-Forschung. 18:13-20. https://doi.org/10.1065/uwsf2005.10.107
  17. Miller, T. W. 2003. Field testing of natural herbicides in the Pacific Northwest. Abstracts of Papers, 225th ACS National Meeting, New Orleans, LA, 2003 AGRO-064. American Chemical Society. Washington DC.
  18. Park, T. S., C. K. Kang, J. E. Park, B. I. Ku, H. K. Park, Sita Ram Ghimire. Y. D. Kim and J. K. Ko. 2009. Sulfonylurea-resistant biotype of Scirpus planiculmis in reclaimed paddy fields, Korea. Kor. J. Weed Sci. 29(2):159-166.
  19. Prisbylla, M. P., Onisko, B. C., Shribbs, J. M., Adams, D. O., Liu, Y., Ellis, M. K., Hawkes, T. R., and Mutter, L. C. 1993. The novel mechanism of action of the herbicidal triketones. Proc. Brighton Crop Prot. Conf.-Weeds 2:731-738.
  20. Quarles, W. 1999. Non-toxic weed control in the lawn and garden. Common Sense Pest Cont. Quarter Summer. pp. 4-14.
  21. Riches, C. R., J. C. Caseley, B. E. Valverde and V. M. Down. 1996. Resistance of Echinochloa colona to ACCase inhibiting herbicides. Proc. International Symposium on Weed and Crop Resistance to Herbicides. EWRS, Cordoba, Spain, pp. 14-16.
  22. Satoh, A., T. Murakami, H. Takebe, S. Imai and H Seto. 1993. Industrial development of bialaphos, a herbicide from the metabolites of Streptomyces hygropicus SF 1293. Actinomycetologica. 7:128-132. https://doi.org/10.3209/saj.7_128
  23. Secor, J. 1994. Inhibition of barnyardgrass 4-hydroxyphenylpyruvate dioxygenase. Plant Physiol. 106:1429-1433. https://doi.org/10.1104/pp.106.4.1429
  24. Schultz, A., O. Ort, P. Beyer and H. Kleing. 1993. SC-0051, a 2-benzoylcyclohexane-1,3-dione bleaching herbicide, is a potent inhibitor of the enzyme p-hydroxyphenylpyruvate dioxygenase. FEBS Lett. 316:162-166.
  25. Webber, C., M. Hams, J. Sherefler, M. Durnova and C. Christopher. 2005. Vinegar as a burn-down herbicide. Proc. 24th Ann. Hortic. Indust. Show, Stillwater, Oklahoma, USA. pp. 168-172.
  26. Young, S. L. 2004. Natural product herbicides for control of annual vegetation along roadsides. Weed Tech. 18:580-587. https://doi.org/10.1614/WT-03-094R3

Cited by

  1. The applicability of burcucumber (Sicyos angulatus L.) as a substitute for nitrogen fertilizer vol.35, pp.1, 2016, https://doi.org/10.5338/KJEA.2016.35.1.06