DOI QR코드

DOI QR Code

Herbicidal Activity of Natural Product Chrysophanic Acid

천연 물질 Chrysophanic acid의 제초 활성

  • Jang, Hyun-Woo (Chemical Biotechnology Research Center, Korea Research Institute of Chemical Technology) ;
  • Seo, Bo-Ram (Chemical Biotechnology Research Center, Korea Research Institute of Chemical Technology) ;
  • Hwang, Hyun-Jin (Chemical Biotechnology Research Center, Korea Research Institute of Chemical Technology) ;
  • Kim, Jae-Deog (Chemical Biotechnology Research Center, Korea Research Institute of Chemical Technology) ;
  • Kim, Jin-Seog (Chemical Biotechnology Research Center, Korea Research Institute of Chemical Technology) ;
  • Kim, Song-Mun (Department of Biological Environment, Kangwon National University) ;
  • Chun, Jae-Chul (Department of Bioenvironmental Chemistry, Chonbuk National University) ;
  • Choi, Jung-Sup (Chemical Biotechnology Research Center, Korea Research Institute of Chemical Technology)
  • 장현우 (한국화학연구원 산업바이오화학연구센터) ;
  • 서보람 (한국화학연구원 산업바이오화학연구센터) ;
  • 황현진 (한국화학연구원 산업바이오화학연구센터) ;
  • 김재덕 (한국화학연구원 산업바이오화학연구센터) ;
  • 김진석 (한국화학연구원 산업바이오화학연구센터) ;
  • 김성문 (강원대학교 자원생물환경학과) ;
  • 전재철 (전북대학교 생물환경화학과) ;
  • 최정섭 (한국화학연구원 산업바이오화학연구센터)
  • Received : 2010.05.24
  • Accepted : 2010.06.21
  • Published : 2010.06.30

Abstract

Herbicidal characterisitcs of natural product chrysophanic acid were investigated in a greenhouse condition. At early- and middle-stage post-emergence treatments, several grasses and broadleaf weeds appeared to be very susceptible to chrysophanic acid. However, any significant herbicidal activity treated by pre-emergence did not occur at concentration ranges from 31.3 to 1,000 ug $mL^{-1}$. Herbicidal activity of chrysophanic acid estimated by visual injury for large crabgrass was much higher when applied at 7 to 14 days after seeding than at 21 and 28 days after seeding. By post-emergence treatment, chrysophanic acid caused very considerable phytotoxicity on several grasses and broadleaf crops. In herbicidal interaction experiments determined by Colby's method, the effect of chrysophanic acid and caryophyllene oxide tank-mixture showed very high synergistic activity. Although chrysophanic acid did not give any pre-emergence effect, herbicidal spectrum tended to be very wide and strong when treated by post-emergence. These results suggest that chrysophanic acid possesses a possible potential to develop as a natural herbicide.

살초활성을 가지고 있는 것으로 알려진 천연 물질 chrysophanic acid에 대하여 온실조건 하에서 살초 특성을 조사하고, 다른 천연 제초활성 물질과의 합제 처리를 통한 살초 작용성 증진 평가를 통해 천연물 제초제로서의 개발 가능성을 확인하고자 일련의 실험을 수행하였다. Chrysophanic acid는 토양처리 살초 효과는 없었고 경엽처리 효과만 나타내었으며, 바랭이에 대한 생육시기별 살초력은 파종 7~14일에서 가장 우수하게 나타났다. 작물에 대한 약해는 토양처리에서는 나타나지 않았으나, 경엽처리에서는 아주 심하게 나타나 작물 선택성은 없었다. Caryophyllene oxide와의 합제처리에서는 고도의 상승효과가 발현되어 chrysophanic acid의 단점을 보완할 수 있는 이상적인 조합이었다. 이를 바탕으로 향후 2원 또는 3원 합제를 통한 보다 광범위하고 고활성의 천연 제초활성 물질을 발굴할 수 있는 기술 개발의 필요성이 제기되었다. 또한, chrysophanic acid는 광엽 및 화본과 초종에 관계없이 넓은 살초 스펙트럼을 갖고 있기 때문에 유효성분의 활성을 증가시킬 수 있는 제형기술 개발을 통해 고활성, 비선택성 천연물 제초제로서의 개발 가능성이 있을 것으로 생각되었다.

Keywords

References

  1. 김건우, 신준구, 김진석. 2002 삽주 근경으로부터 식물생장억제물질의 분리 및 동정. 한국잡초학회지 22(4):371-377.
  2. 김건우, 백정규, 김진석. 2005. 산초나무 열매로부터 살초활성 물질의 분리. 한국잡초학회지 25(3):194-201.
  3. 김성문, 허수정, 용석호, 김진석, 허장현. 2001. 천연물기원 살초활성물질. 한국잡초학회지 21(3):199-212.
  4. 김성문, 김희연, 황기환, 전익조. 2008 긴병꽃풀(Glechoma hederacea) 정유의 제초활성. 한국잡초학회지 28(2):152-160.
  5. 김진철. 2009. 생물농약의 연구개발 동향. Bioin스페셜Zine 2009년 10호. 생명공학정책연구센터 전문가리포트.
  6. 김희연, 최혜진, 유용만, 허수정, 임상현, 김진석, 김성문. 2003. 애기수영 (Rumex acetosella L.)으로부터 새로운 살초활성물질. Chrysophanic acid의 분리. 한국잡초학회지 23(4):301-309.
  7. 조광연. 1998. 신농약 효능 검사 및 기반 기술 연구. 과학기술부 선도기술개발 사업 2단계 최종보고서. 901 p.
  8. 최두희, 이윤정, 이용환. 2002. COOEX 규정 적용에 따른 유기농업의 대응방안. pp. 57-82. In 2002 세계농업규범관련 쟁점대응 심포지엄. 농촌진흥원.
  9. 최성환, 구홍모, 안재영, 남진선, 김형환, 천인규, 이증주. 2008. 식물정유의 단독 잊 혼합처리가 밭잡초와 작물에 미치는 영향. 한국잡초학회지 28(1):61-68.
  10. 최성환, 안재영, 박기웅, 이증주. 2009. 식물정유가 직파벼와 피의 초기생장에 미치는 영향. 한국잡초학회지 29(4):318-322.
  11. 최해진, 김희연, 허장현, 허수정, 김도순, 김성문. 2003 할미꽃(Pulsatilla koreana Nakai)으로부터 새로운 살초활성물질 anemonin의 분리. 한국잡초학회지 23(4):310-317.
  12. Ayer, S. W., B. G. Isaac, L. Kim, N. Makkar, M. Tran and R. J. Stonard. 1991. cis-2-amino-1-hydroxycyclobutane-1-acetic acid, a herbicidal antimetabolite produced by Streptomyces rochei A13018. The journal of Antibiotics 44:1460-1462. https://doi.org/10.7164/antibiotics.44.1460
  13. Barnard, L. D., and M. B. Isman. 2006. Phyto-toxicity of clove oil and its primary constituent eugenol and the role of leaf epicuticular wax in the susceptibility to these essential oils. Weed Sci. 54:833-837. https://doi.org/10.1614/WS-06-039R.1
  14. Bayer, E., K. H. Gugel, K. Hagele, H. Hagenmaier, S. Jessipow, W. A. Konig and H. Zahner. 1972. Stoffwechselproduct von Mikroorganismen 98. Mitteilung (I) Phosphinothricin und phosphinothrithyl-alanyl-alanin. Helvetica Chimica Acta. 55:224-239. https://doi.org/10.1002/hlca.19720550126
  15. Christy. A. L., K. A. Herbst, S. J. Kostka, J. P. Mullen and P. S. Carlson. 1993. Synergizing weed biocontrol agents with chemical herbicides. In : Pest Control with Enhanced Environmental Safety, ed. by S. O. Duke, J. J. Menn and J. R. Plimmar, pp. 87-100. Amer. Chem. Soc.
  16. Colby, S. R. 1967. Calculating synergistic and antagonistic responses of herbicide combinations. Weeds 15:20-22. https://doi.org/10.2307/4041058
  17. Copping, L., and S. O. Duke. 2007. Natural products that have been used commercially as crop protection agents. Pest Management Sci. 63:524-554. https://doi.org/10.1002/ps.1378
  18. Dayan, F. E., C. L. Cantrell and S. O. Duke. 2009. Natural products in crop protection. Bioorganic & Medicinal Chemistry. 17:4022-4034. https://doi.org/10.1016/j.bmc.2009.01.046
  19. Duke, S. O., H. K. Abbas, T. Amagasa and T. Tanaka. 1996. Phytoloxins of microbial origin with potential for use as herbicides, in Copping. LG (ed), Crop Protection Agents from Nature: Natural Production and Analogues, Critical Reviews on Applied Chemistry, Vol. 35. Society for Chemical Industries, Cambridge, UK, pp. 82-113.
  20. Fukuda. M., Y. Tsujino. T. Fujimori, K. Wakabayashi and P. Boger. 2004. Phytotoxicity activity of middle-chain fatty acids I : effect on cell constituents. Pesticide Biochemistry and Physiol. 80: 143-150. https://doi.org/10.1016/j.pestbp.2004.06.011
  21. Hirota, A., H. Okada, T. Kanza, A. Isogai and H. Hirota. 1990. Structure elucidation of kaimonolide B, a new plant growth inhibitor macrolide from Streptomyces. Agric. Biol. Chem. 54:2489-2490. https://doi.org/10.1271/bbb1961.54.2489
  22. Jordan, T. N., and G. F. Warren. 1993. Herbicide combination and interaction. pp 332-334. In : Herbicide action course 1993 Summary of lecture, Purdue University, West Lafayelle, In 47907, USA.
  23. Krieg, L, C., N. A. Walker, T. Senarama and B. D. McKersie. 1990. Growlh. ammonia accumulation and glutamine synthetase activity in alfalfa (Medicage sativa L.) shoots and cell cultures treated with phosphinoduicin. Plant Cell Reports 9:80-83.
  24. Kudsk, P., and S. K. Mathiassen. 2004. Joint action of amino acid biosynthesis-inhibiting herbicides. Weed Res. 44:313-322. https://doi.org/10.1111/j.1365-3180.2004.00405.x
  25. Lederer, B., T. Fujimori, Y. Tsujino, K. Wakabayashi and P. Boger. 2004. Phytotoxicity activity of middle-chain fatty acids II : peroxidation and membrane effects. Pesticide Biochemistry and Physiol. 80:151-156. https://doi.org/10.1016/j.pestbp.2004.06.010
  26. Lee, H. B., C. J. Kim, J. S. Kim, K. S. Hong and K. Y. Cho. 2003. A bleaching herbicidal activity of methoxyhygromycin (MHM) produced by an actinomyceles strain Streptomyces sp. 8E-12. Letters in Applied Microbiol. 36:387-391. https://doi.org/10.1046/j.1472-765X.2003.01327.x
  27. Lydon, J., and S. O. Duke. 1999. Inhibition of glutamine synthesis. In : Singh BK (ed.), Plant Amino Acids : Biochemistry and Biotechnology, Marcel Dekker. New York, pp. 445-464.
  28. Quarles, W. 1999. Non-toxic weed control in the lawn and garden. Common Sense Pest Cont. Quaner Summer. pp. 4-14.
  29. Saloh, A., T. Murakami, H. Takebe. S. Imai and H Seto. 1993. Industrial development of bialaphos, a herbicide from the metabolites of Streptomyces hygropicus SF 1293. Actinomycetologica. 7: 128-132. https://doi.org/10.3209/saj.7_128
  30. Semple. S. J., S. M. Pyke, G. D. Reynols and R. L. P. Flower. 2001. In vitro antiviral activity of the anthraquinone chrysophanic acid against polivirus. Antiviral Research. 49:169-178. https://doi.org/10.1016/S0166-3542(01)00125-5
  31. Tachibana, T., T. Watanabe, Y. Sekizawa and T. Takematsu. 1986. Inhibition of glutamine synthetase and quantative changes of free amino acids in shoots of bialaphos treated Japanse barnyard millet. Journal of Pesticide Sci. 11:27-31. https://doi.org/10.1584/jpestics.11.27
  32. Tworkoski, T. 2002. Herbicide effects of essential oils. Weed Sci. 50:425-431. https://doi.org/10.1614/0043-1745(2002)050[0425:HEOEO]2.0.CO;2

Cited by

  1. Herbicidal Activity and KAPAS Inhibition of Juglone with Potential as Natural Herbicide vol.31, pp.3, 2011, https://doi.org/10.5660/KJWS.2011.31.3.240
  2. Improved Soil Application Bioassay for Efficient Development of Natural Pre-emergence Herbicides vol.31, pp.3, 2011, https://doi.org/10.5660/KJWS.2011.31.3.229
  3. Herbicidal Activity of Essential Oil from Amyris (Amyris balsamifera) vol.1, pp.4, 2012, https://doi.org/10.5660/WTS.2012.1.4.044