DOI QR코드

DOI QR Code

Characterization of Cellulases from Schizophyllum commune for Hydrolysis of Cellulosic Biomass

Schizophyllum commune에 의한 Cellulase 생산 및 섬유소계 바이오매스의 당화를 위한 효소적 특성

  • Kim, Hyun-Jung (Department of Forest Products and Biotechnology, College of Forest Science, Kookmin University) ;
  • Kim, Yoon-Hee (Department of Forest Products and Biotechnology, College of Forest Science, Kookmin University) ;
  • Cho, Moon-Jung (Department of Forest Products and Biotechnology, College of Forest Science, Kookmin University) ;
  • Shin, Keum (Institute of Forest Science, Kookmin University) ;
  • Lee, Dong-Heub (Korea Forest Research Institute, Division of Wood Processing) ;
  • Kim, Tae-Jong (Department of Forest Products and Biotechnology, College of Forest Science, Kookmin University) ;
  • Kim, Yeong-Suk (Department of Forest Products and Biotechnology, College of Forest Science, Kookmin University)
  • 김현정 (국민대학교 삼림과학대학 임산생명공학과) ;
  • 김윤희 (국민대학교 삼림과학대학 임산생명공학과) ;
  • 조문정 (국민대학교 삼림과학대학 임산생명공학과) ;
  • 신금 (국민대학교 산림과학연구소) ;
  • 이동흡 (국립산림과학원, 환경소재공학과) ;
  • 김태종 (국민대학교 삼림과학대학 임산생명공학과) ;
  • 김영숙 (국민대학교 삼림과학대학 임산생명공학과)
  • Received : 2010.04.14
  • Accepted : 2010.05.13
  • Published : 2010.11.25

Abstract

The optimum culture condition of Schizophyllum commune for the cellulase production and its enzymatic characteristics for saccharification of cellulosic biomass were analyzed. S. commune secrets ${\beta}$-1,4-xylosidase (BXL) and cellulases, including endo-${\beta}$-1,4-glucanase (EG), cellobiohydrolase (CBH), and ${\beta}$-glucosidase (BGL). The optimum reaction temperature for all cellulases was $50^{\circ}C$ and the thermostable range was $30{\sim}40^{\circ}C$C. The optimum reaction pH for all cellulases was 5.5 in a range of temperature from $0^{\circ}C$ to $55^{\circ}C$. The best nutritions for the cellulase production of S. commune among tested nutrients were 2% cellulose for the carbon source and corn steep liquor or peptone/yeast extract for the nitrogen source without vitamins. The environmental culture condition for the cellulase production was 5.5~6.0 for pH at $25{\sim}30^{\circ}C$. The enzyme activities of EG, BGL, CBH, and BXL were 3670.5, 631.9, 398.5, and 15.2 U/$m{\ell}$, respectively, after concentration forty times from the culture broth of S. commune which was grown at the optimized culture condition. Alternative filter paper unit assay showed 11 FPU/$m{\ell}$ enzyme activity. The saccharification tests using cellulase of S. commune showed the low saccharification rate on tested hardwoods but a high value of 50.5% on cellulose, respectively. The saccharification rate (50.5%) of cellulose by cellulase produced in this work is higher than 45.7% in the commercial enzyme (Celluclast 1.5L, 30 FPU/g, glucan).

본 연구에서는 Schizophyllum commune의 당 분해효소 생산을 위한 최적 배양 조건과 목질바이오매스에 대한 당화 특성에 대하여 연구하였다. S. commune 균체 외 효소에는 endo-${\beta}$-1,4-glucanase (EG), cellobiohydrolase (CBH), ${\beta}$-glucosidase (BGL)와 같은 cellulase와 ${\beta}$-1,4-xylosidase (BXL)이 함유되어 있고 그 중에서 EG 및 BGL활성이 비교적 높은 활성을 나타낸 것으로 밝혀졌다. S. commune에서 생산된 EG, BGL, 및 CBH의 최적 온도는 $50^{\circ}C$이었으나, 열안정성을 가지는 온도범위는 $30{\sim}40^{\circ}C$였다. 그리고 최적 pH는 5.5이었으며 열 안정성을 나타내는 온도범위에서의 적정 pH는 동일한 pH 5.5이었다. Cellulase 생산을 위한 S. commune의 최적배양 조건은, 탄소원으로 천연 cellulose, 질소원으로는 corn steep, 또는 peptone/yeast extract 혼합물, 비타민은 첨가하지 않는 것이 cellulase 효소활성 증가에 적절한 것으로 밝혀졌다. 또한 탄소원의 최적 첨가 농도는 2% (w/w), 적정 배양 pH 및 온도는 5.5~6.0과 $25{\sim}30^{\circ}C$로 밝혀졌다. 본 연구에서 도출된 최적 배양 조건으로 S. commune를 배양시키고 40배로 농축한 결과, EG가 3670.5 U/$m{\ell}$, BGL과 CBH가 각각 631.9 U/$m{\ell}$, 398.5 U/$m{\ell}$, BXL이 15.2 U/$m{\ell}$로 매우 높은 효소 활성을 나타냈다. 동일한 효소의 Filter Paper Unit도 11 FPU/$m{\ell}$로 상당히 높았다. 최적배양조건에서 얻어진 S. commune 효소로 다양한 기질에 대해 당화 시험을 실행한 결과, 전처리를 하지 않은 공시 활엽수에 대하여 낮은 당화율을 나타냈으나 천연 cellulose (Aldrich, ~20 micron) 및 볏짚의 경우에는 각각 50.5% 및 33.1%의 높은 당화성능을 나타냈다. 이 같은 당화 수준은 동일 효소농도 (30 FPU/g, glucan)로 비교했을 때 Trichoderma reesei 유래 상용화 효소인 Celluclast 1.5L의 약 110% 수준을 나타냄으로써, 대량생산기술 개발과정을 통해 목질계 당화 효소로의 상용화 가능성이 높은 균주로 평가되었다.

Keywords

References

  1. 김윤희, 조문정, 신금, 김태종, 김남훈, 김영숙. 2010. Fomitopsis palustris의 균체 외 효소에 의한 볏짚의 효소당화에 관한 연구. 목재공학 38(3): 262-273.
  2. 윤정준, 이영민, 최두열, 김영균, 김영숙, 2007. 볏짚 분해과정 중에 생산하는 Fomitopsis palustris 균체 외 Xylanase의 분리 정제 및 효소 특성. 목재공학 35(6): 159-165.
  3. Blanchette, R. A., C. D. Behrcndt. D. Williams. S. Iverson, M. Akhtar, and S. A. Enebak. 1998. A new approach to effective biopulping: treating logs with Phlebiopsis giganteo. 7th International Conference on Biotechology in the Pulp and Paper Industry, Vol. A, A51-A54.
  4. Bradford, M. M. 1967. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analatical Biochemistry 72: 248-254.
  5. Fang, X., S. Yano, H. Inoue, and S. Sawayama. 2008. Lactose enhances cellulase production by the filamentous fungus Acremoniitm cellulolyticus. Journal of Bioscience and Bioengineering 106(2): 115-120. https://doi.org/10.1263/jbb.106.115
  6. Fritscher, C., R. Messner, and C. P. Kubicek 1990. Cellobiose metabolism and cellobiohydrlase I biosynthesis by Trichoderma reesei. Experimental Mycology 14: 405-415. https://doi.org/10.1016/0147-5975(90)90063-Y
  7. Ghose, T. K. 1987. Measurement of cellulase activities. Pure and Applied Chemistry 59(2): 257-268. https://doi.org/10.1351/pac198759020257
  8. Goldstein, I. and J. Easter. 1992 An improved process for converting cellulose to ethanol. Tappi Journal 20: 165-140.
  9. Ivo, V, N. Sanchi, T. Petya, and L. Vesk. 2009. Use of enzymes in hydrolysis of maize stalks. BioResources 4(1): 285-291.
  10. Jeya, M., S. Thiagarajan, J. K. Lee, and P. Gunasekaran 2009. Identification of new GH 10 and GH 11 xylanase genes from Aspergillus versicolor MKU3 genome-walking PCR. Biotechnology and Bioprocess Engineering 14(1): 13-19. https://doi.org/10.1007/s12257-008-0112-6
  11. Joo, A. R, K. M. Lee, W. I. Sim, M. Jeya, M. R. Hong, Y. S. Kim, D. K. Oh, and J. K. Lee. 2009. Thiamine increases ${\beta}$-glucosidase production in the newly-isolated strain of Fomilopsis pinicola, Letters in Applied Microbiology 49: 196-203. https://doi.org/10.1111/j.1472-765X.2009.02639.x
  12. Joo, A. R., M. Jeya, K. M. Lee, W. I. Sim, J. S. Kim, I. W. Kim, Y. S. Kim, D. K Oh, P. Gunasekaran, and J. K. Lee. 2009. Purification and characterization of a ${\beta}$-1,4-glucosidase from a newly isolated strain of Fomilopsis pinicola. Applied Microbiology and Biotechnology 83(2): 285-294. https://doi.org/10.1007/s00253-009-1861-7
  13. Jorgensen. H. and L. Olsson. 2006. Production of cellulases by Penicillium brasiliaiinm IBT 20888 - Effect of substrate on hydrolytic performance, Enzyme and Microbial Technology 38(3-4): 381-390. https://doi.org/10.1016/j.enzmictec.2005.06.018
  14. Juhasz, T., Z. Szengyel, K. Reczey, M. Siika-Aho, and L. Viikari. 2005. Characterization of cellulases and hemicellulascs produced by Trichoderma reesei on various carbon sources. Process Biochemistry 40(11): 3519-3525. https://doi.org/10.1016/j.procbio.2005.03.057
  15. Kamm, B. and M. Kamm. 2004. Principles of biorefineries. Applied Microbiology and Biotechnology 64(2): 137-145. https://doi.org/10.1007/s00253-003-1537-7
  16. Kim, H J., M. J. Cho, Y. H. Kim, K. Shin, Y. K. Kim T. J. Kim and Y. S. Kim 2010. Effect of carbon source on the hydrolytic ability of the enzyme from Fomitopsis pinicola for lignocellulosic biomass, Journal of the Korean Wood Science and Technology 38(5): 429-438. https://doi.org/10.5658/WOOD.2010.38.5.429
  17. Krusa, M, G. Henriksson, G. Johansson, T. Reitberger, and H. Lennholm. 2005. Oxidative cellulose degradation by cellobiose dehydrogenase from Phanerochaete chrysosporium : A model compound study, Holzforschung, 59: 263-26. https://doi.org/10.1515/HF.2005.043
  18. Kubicek, C. P., G. Muhlbauer, M. Krotz, E. John, and E. M. Kubicek. 1988. Properties of a conidial bound cellulase enzyme system from Trichoderma reesei. Journal of General Microbiology 134: 1215-1222.
  19. Ladisch, M. and J. Svartzkopf. 1991. Ethanol production and the cost of fermentable sugars from biomass. Bioresource Technology 36(1): 83-95. https://doi.org/10.1016/0960-8524(91)90102-P
  20. Mach, R. L., B. Seiboth, A. Myasnikov, R. Gonzalez, J. Strauss, and A. M. Harkki. 1995. The Bgl1 gene of QM9414 encodes an extracellular, cellulose inducible beta-glucosidase involved in cellulase induction by sophorose. Molecular Microbiology 16(4): 687-697. https://doi.org/10.1111/j.1365-2958.1995.tb02430.x
  21. Mats, G. and Z. Guido. 2007. Pretreatment of lignocellulosic materals for efficient bioethanol production. Advances in biochemical engineering/biotechnology 108: 41-65. https://doi.org/10.1007/10_2007_070
  22. Morikawa, Y., T. Ohashi, O. Mantani, and H. Okada. 1995. Cellulase induction by lactose in Trichoderrna reesei PC-3-7. Applied Biochemistry and Biotechnology 44(1-2): 106-111.
  23. Novozymes. 2002. Product sheet (Ceiluclast 1.5 LFG), 2001-08524-03.pdf, Novozymes A/S, Denmark.
  24. Selig, M., N. Weiss, and Y. Ji. 2008. Enzymatic sac-charification of lignocellulosic biomass. National Renewable Energy Laboratory Technical Report NREL/TP-510-42629.
  25. Sheehan, J. 2001. The road to bioethanol. A strategic perspective of the US department of energy's national ethanol program. In: Himmel M. E, Baker JO., Saffler JN (eds) Glycosyl hydrolases for biomass conversion, American chemical society, Washington DC. p. 2-25.
  26. Sluiter, A., B. Hames, R. Ruiz, C. Scarlata, J. Siuiter, D. Templeton, and D. Crocker. 2008. Determination of structural carbohydrates and lignin in biomass, National Renewable Energy laboratory Technical Report NREL/TP-510-42618.
  27. Somogy, M. 1952. Notes on sugar determination. Journal of Biological Chemistry 195: 19-23.
  28. Sun, Y. and J. Cheng. 2002. Hydrolysis of lignocellulosic materials for ethanol production: A review. Bioresource Technology 83(1): 1-11. https://doi.org/10.1016/S0960-8524(01)00212-7
  29. Xie, Y, D. Phelps, C. H. Lee, M. Sedlak, N. Ho, and N. H. L. Wang. 2005. Comparison of two adsorbents for sugar recovery from biomass hydrolysate. Industrial and Engineering Chemistry Research 44(17): 6816-6823. https://doi.org/10.1021/ie049079x
  30. Yang, B. and C. E. Wyman. 2008. Pretreatment: The key to unlocking low-cost cellulosic ethanol. Biofuels Bioproducts and Biorefining 2(1): 26-40. https://doi.org/10.1002/bbb.49
  31. Yoon, J. J. and Y. K. Kim 2005. Degradation of crystalline cellulose by the brown-rot basidio-mycete Fomitopsis palustris. The Journal of Microbiology 43(6): 487-492.
  32. Yoon, J. J, C. J. Cha, Y. S. Kim, D. W. Son, and Y. K. Kim. 2007. The brown-rot basidiomycete Fomitopsis palustris has the endo-glucanases capable of degrading microcrystalline cellulose. Journal of Microbiology and Biotechnology 17(5): 800-805.
  33. Yu, Z. and H. Zhang 2004. Ethanol fermentation of acid-hydrolyzed cellulosic pyrolysate with Saccharomyces cerevisiae, Bioresource Technology 90(1): 95-100.
  34. Zhang, Y-H. P. and L. R. Lynd. 2004. Toward an aggregated understanding of enzymatic hydrolysis of cellulose Noncompleted cellulase systems. Biotechnology and Bioengineering 88(7): 797-824. https://doi.org/10.1002/bit.20282

Cited by

  1. Biopolishing of Cotton Fabric using Crude Cellulases from Acanthophysium sp. KMF001 vol.44, pp.3, 2016, https://doi.org/10.5658/WOOD.2016.44.3.381
  2. Characterization of alkaline cellulase from Bacillus subtilis 4-1 isolated from Korean traditional soybean paste vol.21, pp.3, 2014, https://doi.org/10.11002/kjfp.2014.21.3.442
  3. Optimization of Cellulolytic Enzyme Production for newly isolated Bacillus sp. H9-1 from Herbivore Feces vol.28, pp.1, 2013, https://doi.org/10.7841/ksbbj.2013.28.1.42