References
- 김윤희, 조문정, 신금, 김태종, 김남훈, 김영숙. 2010. Fomitopsis palustris의 균체 외 효소에 의한 볏짚의 효소당화에 관한 연구. 목재공학 38(3): 262-273.
- 윤정준, 이영민, 최두열, 김영균, 김영숙, 2007. 볏짚 분해과정 중에 생산하는 Fomitopsis palustris 균체 외 Xylanase의 분리 정제 및 효소 특성. 목재공학 35(6): 159-165.
- Blanchette, R. A., C. D. Behrcndt. D. Williams. S. Iverson, M. Akhtar, and S. A. Enebak. 1998. A new approach to effective biopulping: treating logs with Phlebiopsis giganteo. 7th International Conference on Biotechology in the Pulp and Paper Industry, Vol. A, A51-A54.
- Bradford, M. M. 1967. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analatical Biochemistry 72: 248-254.
- Fang, X., S. Yano, H. Inoue, and S. Sawayama. 2008. Lactose enhances cellulase production by the filamentous fungus Acremoniitm cellulolyticus. Journal of Bioscience and Bioengineering 106(2): 115-120. https://doi.org/10.1263/jbb.106.115
- Fritscher, C., R. Messner, and C. P. Kubicek 1990. Cellobiose metabolism and cellobiohydrlase I biosynthesis by Trichoderma reesei. Experimental Mycology 14: 405-415. https://doi.org/10.1016/0147-5975(90)90063-Y
- Ghose, T. K. 1987. Measurement of cellulase activities. Pure and Applied Chemistry 59(2): 257-268. https://doi.org/10.1351/pac198759020257
- Goldstein, I. and J. Easter. 1992 An improved process for converting cellulose to ethanol. Tappi Journal 20: 165-140.
- Ivo, V, N. Sanchi, T. Petya, and L. Vesk. 2009. Use of enzymes in hydrolysis of maize stalks. BioResources 4(1): 285-291.
- Jeya, M., S. Thiagarajan, J. K. Lee, and P. Gunasekaran 2009. Identification of new GH 10 and GH 11 xylanase genes from Aspergillus versicolor MKU3 genome-walking PCR. Biotechnology and Bioprocess Engineering 14(1): 13-19. https://doi.org/10.1007/s12257-008-0112-6
-
Joo, A. R, K. M. Lee, W. I. Sim, M. Jeya, M. R. Hong, Y. S. Kim, D. K. Oh, and J. K. Lee. 2009. Thiamine increases
${\beta}$ -glucosidase production in the newly-isolated strain of Fomilopsis pinicola, Letters in Applied Microbiology 49: 196-203. https://doi.org/10.1111/j.1472-765X.2009.02639.x -
Joo, A. R., M. Jeya, K. M. Lee, W. I. Sim, J. S. Kim, I. W. Kim, Y. S. Kim, D. K Oh, P. Gunasekaran, and J. K. Lee. 2009. Purification and characterization of a
${\beta}$ -1,4-glucosidase from a newly isolated strain of Fomilopsis pinicola. Applied Microbiology and Biotechnology 83(2): 285-294. https://doi.org/10.1007/s00253-009-1861-7 - Jorgensen. H. and L. Olsson. 2006. Production of cellulases by Penicillium brasiliaiinm IBT 20888 - Effect of substrate on hydrolytic performance, Enzyme and Microbial Technology 38(3-4): 381-390. https://doi.org/10.1016/j.enzmictec.2005.06.018
- Juhasz, T., Z. Szengyel, K. Reczey, M. Siika-Aho, and L. Viikari. 2005. Characterization of cellulases and hemicellulascs produced by Trichoderma reesei on various carbon sources. Process Biochemistry 40(11): 3519-3525. https://doi.org/10.1016/j.procbio.2005.03.057
- Kamm, B. and M. Kamm. 2004. Principles of biorefineries. Applied Microbiology and Biotechnology 64(2): 137-145. https://doi.org/10.1007/s00253-003-1537-7
- Kim, H J., M. J. Cho, Y. H. Kim, K. Shin, Y. K. Kim T. J. Kim and Y. S. Kim 2010. Effect of carbon source on the hydrolytic ability of the enzyme from Fomitopsis pinicola for lignocellulosic biomass, Journal of the Korean Wood Science and Technology 38(5): 429-438. https://doi.org/10.5658/WOOD.2010.38.5.429
- Krusa, M, G. Henriksson, G. Johansson, T. Reitberger, and H. Lennholm. 2005. Oxidative cellulose degradation by cellobiose dehydrogenase from Phanerochaete chrysosporium : A model compound study, Holzforschung, 59: 263-26. https://doi.org/10.1515/HF.2005.043
- Kubicek, C. P., G. Muhlbauer, M. Krotz, E. John, and E. M. Kubicek. 1988. Properties of a conidial bound cellulase enzyme system from Trichoderma reesei. Journal of General Microbiology 134: 1215-1222.
- Ladisch, M. and J. Svartzkopf. 1991. Ethanol production and the cost of fermentable sugars from biomass. Bioresource Technology 36(1): 83-95. https://doi.org/10.1016/0960-8524(91)90102-P
- Mach, R. L., B. Seiboth, A. Myasnikov, R. Gonzalez, J. Strauss, and A. M. Harkki. 1995. The Bgl1 gene of QM9414 encodes an extracellular, cellulose inducible beta-glucosidase involved in cellulase induction by sophorose. Molecular Microbiology 16(4): 687-697. https://doi.org/10.1111/j.1365-2958.1995.tb02430.x
- Mats, G. and Z. Guido. 2007. Pretreatment of lignocellulosic materals for efficient bioethanol production. Advances in biochemical engineering/biotechnology 108: 41-65. https://doi.org/10.1007/10_2007_070
- Morikawa, Y., T. Ohashi, O. Mantani, and H. Okada. 1995. Cellulase induction by lactose in Trichoderrna reesei PC-3-7. Applied Biochemistry and Biotechnology 44(1-2): 106-111.
- Novozymes. 2002. Product sheet (Ceiluclast 1.5 LFG), 2001-08524-03.pdf, Novozymes A/S, Denmark.
- Selig, M., N. Weiss, and Y. Ji. 2008. Enzymatic sac-charification of lignocellulosic biomass. National Renewable Energy Laboratory Technical Report NREL/TP-510-42629.
- Sheehan, J. 2001. The road to bioethanol. A strategic perspective of the US department of energy's national ethanol program. In: Himmel M. E, Baker JO., Saffler JN (eds) Glycosyl hydrolases for biomass conversion, American chemical society, Washington DC. p. 2-25.
- Sluiter, A., B. Hames, R. Ruiz, C. Scarlata, J. Siuiter, D. Templeton, and D. Crocker. 2008. Determination of structural carbohydrates and lignin in biomass, National Renewable Energy laboratory Technical Report NREL/TP-510-42618.
- Somogy, M. 1952. Notes on sugar determination. Journal of Biological Chemistry 195: 19-23.
- Sun, Y. and J. Cheng. 2002. Hydrolysis of lignocellulosic materials for ethanol production: A review. Bioresource Technology 83(1): 1-11. https://doi.org/10.1016/S0960-8524(01)00212-7
- Xie, Y, D. Phelps, C. H. Lee, M. Sedlak, N. Ho, and N. H. L. Wang. 2005. Comparison of two adsorbents for sugar recovery from biomass hydrolysate. Industrial and Engineering Chemistry Research 44(17): 6816-6823. https://doi.org/10.1021/ie049079x
- Yang, B. and C. E. Wyman. 2008. Pretreatment: The key to unlocking low-cost cellulosic ethanol. Biofuels Bioproducts and Biorefining 2(1): 26-40. https://doi.org/10.1002/bbb.49
- Yoon, J. J. and Y. K. Kim 2005. Degradation of crystalline cellulose by the brown-rot basidio-mycete Fomitopsis palustris. The Journal of Microbiology 43(6): 487-492.
- Yoon, J. J, C. J. Cha, Y. S. Kim, D. W. Son, and Y. K. Kim. 2007. The brown-rot basidiomycete Fomitopsis palustris has the endo-glucanases capable of degrading microcrystalline cellulose. Journal of Microbiology and Biotechnology 17(5): 800-805.
- Yu, Z. and H. Zhang 2004. Ethanol fermentation of acid-hydrolyzed cellulosic pyrolysate with Saccharomyces cerevisiae, Bioresource Technology 90(1): 95-100.
- Zhang, Y-H. P. and L. R. Lynd. 2004. Toward an aggregated understanding of enzymatic hydrolysis of cellulose Noncompleted cellulase systems. Biotechnology and Bioengineering 88(7): 797-824. https://doi.org/10.1002/bit.20282
Cited by
- Biopolishing of Cotton Fabric using Crude Cellulases from Acanthophysium sp. KMF001 vol.44, pp.3, 2016, https://doi.org/10.5658/WOOD.2016.44.3.381
- Characterization of alkaline cellulase from Bacillus subtilis 4-1 isolated from Korean traditional soybean paste vol.21, pp.3, 2014, https://doi.org/10.11002/kjfp.2014.21.3.442
- Optimization of Cellulolytic Enzyme Production for newly isolated Bacillus sp. H9-1 from Herbivore Feces vol.28, pp.1, 2013, https://doi.org/10.7841/ksbbj.2013.28.1.42