Microchip상에서 효율적인 DNA 분석을 위한 반복단위 단백질의 생산

Production of Repetitive Polypeptides for an Efficient DNA Analysis on a Microchip

  • 이현진 (홍익대학교 화학공학과) ;
  • 최석진 (한국과학기술원 생명화학공학과) ;
  • 서태석 (한국과학기술원 생명화학공학과) ;
  • 원종인 (홍익대학교 화학공학과)
  • Yi, Hyeon-Jin (Department of Chemical Engineering, Hongik University) ;
  • Choi, Seok-Jin (Department of Chemical and Biomolecular Engineering (BK21 program) and Institute for the BioCentry, KAIST) ;
  • Seo, Tae-Seok (Department of Chemical and Biomolecular Engineering (BK21 program) and Institute for the BioCentry, KAIST) ;
  • Won, Jong-In (Department of Chemical Engineering, Hongik University)
  • 투고 : 2010.03.02
  • 심사 : 2010.04.21
  • 발행 : 2010.04.28

초록

Drag-tag으로 사용될 반복단위 단백질을 생물학적인 방법을 통해 생산함으로써 수용액 내에서 DNA 분리가 가능함을 확인하였다. 서로 다른 크기를 갖는 두 종류의 반복단위 단백질을 디자인하였고, 이를 발현시킨 뒤 정제하였다. 정제된 반복단위 단백질에 형광 dye를 포함하고 있는 100 base의 DNA를 연결하였고, 이 연결 물질을 모세관 내부가 수용액으로 충진된 microchip 상에서 전기영동 하였다. 그 결과 생물학적으로 생산된 반복단위 단백질이 SNP 분석과 같은 빠르고 효율적인 DNA 분석에 적합한 후보물질로 사용될 수 있음을 확인하였다.

We generated the feasibility of DNA separation in free-solution using genetically engineered repetitive polypeptides as drag-tags. Two different-sized repetitive polypeptides were designed, expressed in E. coli, and purified. They were conjugated to a fluorescently labeled DNA (100 base), and the electrophoretic mobilities of these conjugate molecules were analyzed on a microchip. The results of these studies indicate that genetically engineered repetitive polypeptide is a prominent candidate for rapid and high-throughput genetic mutation detection, such as SNP analysis.

키워드

참고문헌

  1. Baba, Y. (1999) Capillary affinity gel electrophoresis: new technique for specific recognition of DNA sequence and the mutation detection on DNA. J. Biochem. Biophys. Methods. 41: 91-101. https://doi.org/10.1016/S0165-022X(99)00040-8
  2. Won, J.-I. (2006) Recent advances in DNA sequencing by end-labeled free-solution electrophoresis (ELFSE). Biotechnol. Bioprocess Eng. 11: 179-186. https://doi.org/10.1007/BF02932028
  3. Bruin, G. J. M., T. Wang, X. Xu, J. C. Kraak, and H. Poppe (1992) Preparation of polyacrylamide gelfilled capillaries by photopolymerization for capillary electrophoresis. J. Microcol. Sep. 4: 439-448. https://doi.org/10.1002/mcs.1220040512
  4. Noolandi, J. (1992) A new concept for sequencing DNA by capillary electrophoresis. Electrophoresis 13: 394-395. https://doi.org/10.1002/elps.1150130180
  5. Mayer, P., G. W. Slater, and D. Drouin (1994) Theory of DNA sequencing using free-solution electrophoresis of protein-DNA complexes. Anal. Chem. 66: 1777-1780. https://doi.org/10.1021/ac00082a029
  6. Noolandi, J. (1993) A new concept for separating nucleic acids by electrophoresis in solution using hybrid synthetic end labeled-nucleic acid molecules. Electrophoresis 14: 680-681. https://doi.org/10.1002/elps.11501401108
  7. Slater, G. W., T. B. L Kist., H. Ren, and G. Drouin (1998) Recent developments in DNA electrophoretic Separations. Electrophoresis 19: 1525-1541. https://doi.org/10.1002/elps.1150191003
  8. Slater, G. W., C. Desruisseaux, S. J. Hubert, J.-F. Mercier, J. Labrie, J. Boileau, F. Tessier, and M. P. Pepin (2000) Theory of DNA electrophoresis: A look at some current challenges. Electrophoresis 21: 3873-3887. https://doi.org/10.1002/1522-2683(200012)21:18<3873::AID-ELPS3873>3.0.CO;2-8
  9. Meagher, R. J., J.-I. Won, L. C. McCormick, S. Nedelcu, M. M. Bertrand, J. L. Bertram, G. Drouin, A. E. Barron, and G. W. Slater (2005) End-labeled free-solution electrophoresis of DNA. Electrophoresis 26: 331-350. https://doi.org/10.1002/elps.200410219
  10. Chen, X. and P. F. Sullivan (2003) Single nucleotide polymorphism genotyping: biochemistry, protocol, cost and throughput. Pharmacogenomics J. 3: 77-96. https://doi.org/10.1038/sj.tpj.6500167
  11. Vreeland, W. N., R. J. Meagher, and A. E. Barron (2002) Multiplexed, high-throughput genotyping by single-base extension and end-labeled free-solution electrophoresis. Anal. Chem. 74: 4328-4333. https://doi.org/10.1021/ac0258094
  12. Joo, G.-S., S. K. Jha, and Y.-S. Kim (2009) A capillary electrophoresis microchip for amperometric detection of DNA. Current Appl. Physics 9: e222-e224. https://doi.org/10.1016/j.cap.2009.06.034
  13. Meagher, R. J., J. A. Coyne, C. N. Hestekin, T. N. Chiesl, R. D. Haynes, J.-I. Won, and A. E. Barron (2007) Multiplexed p53 mutation detection by free-solution conjugate microchannel electrophoresis with polyamide drag-tags. Anal. Chem. 79: 1848-1854. https://doi.org/10.1021/ac061903z
  14. Won, J.-I., R. J. Meagher, and A. E. Barron (2004) Characterization of glutamine deamidation in a long, repetitive protein polymer via bioconjugate capillary electrophoresis. Biomacromolecules 5: 618-627. https://doi.org/10.1021/bm034442p
  15. Meagher, R. J., J.-I. Won, J. A. Coyne, J. Lin, and A. E. Barron (2008) Sequencing of DNA by free-solution capillary electrophoresis using a genetically engineered protein polymer drag-tag. Anal. Chem. 80: 2842-2848. https://doi.org/10.1021/ac702591t
  16. Won, J.-I., R. J. Meagher, and A. E. Barron (2005) Protein polymer drag-tags for DNA separations by end-labeled free-solution electrophoresis. Electrophoresis 26: 2138-2148. https://doi.org/10.1002/elps.200410042