광학적 다중 법선 벡터 기반 훈색(暈色)현상 BRDF 압축 기법

Optical Multi-Normal Vector Based Iridescence BRDF Compression Method

  • 유세운 (한양대학교 전자통신컴퓨터공학부) ;
  • 이상화 (서울대학교 전기공학부 BK) ;
  • 박종일 (한양대학교 전자통신컴퓨터공학부)
  • 투고 : 2009.08.31
  • 심사 : 2010.03.11
  • 발행 : 2010.06.15

초록

본 논문은 생물체 표면에서 번쩍이고 다채로운 색깔의 반사특성을 보이는 훈색(暈色)현상의 양방향 반사율 분포 함수(BRDF: Bidirectional Reflectance Distribution Function)의 압축방법을 제안한다. 그래픽스 기술에서 훈색 현상의 용어를 보통 이리데센스(Iridescence) 또는 구조적 색상(structural colors)라고 부른다. 이러한 현상의 주요한 특징은 시점에 따라 다채로운 색상과 밝기를 갖는 것이다. 이것을 구현하기 위해 기존의 그래픽스 기술들은 BRDF를 이용한 방법을 사용한다. BRDF 방법은 많은 시점의 영상을 직접 활용하여 사실적인 표현이 가능한 장점이 있지만, 데이터양이 커서 연산량이 많은 단점이 있다. 본 논문에서는 훈색(暈色: Iridescence)현상의 BRDF로부터 반사맵을 작성하고, 반사맵을 여러 개의 색상 기반의 동심원으로 반사맵을 표현할 수 있는 방법을 제안한다. 이때 동심원 1개는 1개의 법선벡터에 의한 반사광의 빔폭을 의미한다. 본 논문에서는 여러 개의 가상의 광학적 법선벡터를 사용하여 울퉁불퉁한 동심원을 합성한다. 그리고 동심원의 중심을 통과하는 한 선분으로부터 1차원 스펙트럼 정보를 취득한다. 제안하는 방법은 BRDF의 막대한 데이터양을 효과적으로 줄여서 단지 1장의 텍스처를 사용하여 사실적인 밝기 차이와 스펙트럼 표현이 가능한 영상기반 렌더링 기법(IBR: image based rendering)으로 사용할 수 있다.

This paper proposes a biological iridescence BRDF(Bidirectional Reflectance Distribution Function) compression and rendering method. In the graphics technology, iridescence sometimes is named structure colors. The main features of these symptoms are shown transform of color and brightness by varying viewpoint. Graphics technology to render this is the BRDF technology. The BRDF methods enable realistic representation of varying view direction, but it requires a lot of computing power because of large data. In this paper, we obtain reflection map from iridescence BRDF, analyze color of reflection map and propose representation method by several colorfully concentric circle. The one concentric circle represents beam width of reflection ray by one normal vector. In this paper, we synthesize rough concentric by using several virtually optical normal vectors. And we obtain spectrum information from concentric circles passing through the center point. The proposed method enables IBR(image based rendering) technique which results is realistic illuminance and spectrum distribution by one texture from reduced BRDF data within spectrum.

키워드

참고문헌

  1. Aner Ben-Artzi, Kevin Egan, Ravi Ramamoorthi, Fredo Durand, "A precomputed polynomial representation for interactive BRDF editing with global illumination," ACM Trans. on Graphics, vol.27 Issue 2, no.13, April, 2008.
  2. Murat Kurt ,Muhammed Gokhan Cinsdikici, "Representing BRDFs using SOMs and MANs," ACM SIGGRAPH Computer Graphics Session, vol.42, Issue 3, no.2, Aug., 2008.
  3. Michael H., Jason L., Greg H., Todd Zickler, "A photometric approach for estimating normals and tangents," ACM Trans. on Graphics, vol.27, no.5, Article 133, Dec., 2008.
  4. Ewen C.-P., Rui Wang, Oskar A., Fabio P., "Fast, realistic lighting and material design using nonlinear cut approximation," ACM Trans. on Graphics, vol.27, no.5, Article 128, Dec., 2008.
  5. Jiaping W., Shuang Z., Xin T., John S., Baining G., "Modeling anisotropic surface reflectance with example-based microfacet synthesis," ACM Trans. on Graphics, vol.27, no.41, Article 128, Dec., 2008.
  6. Peter V., Philip D., "Shape-dependent gloss correction," International Symposium on Applied perception in graphics and visualization, pp.123-130, August, 2008.
  7. Kun Xu, Yun-Tao Jia, Hongbo Fu, Shi-Min Hu, Chiew-Lan Tai, "Spherical Piecewise Constant Basis Functions for All-Frequency Precomputed Radiance Transfer," IEEE Trans. on Visualization and Computer Graphics, vol.14, Issue 2, pp.454-467, March. 2008.
  8. Mahajan D., Ramamoorthi R., Curless B., "A Theory Of Frequency Domain Invariants: Spherical Harmonic Identities for BRDF/Lighting Transfer and Image Consistency," IEEE Trans. on Pattern Analysis and Machine Intelligence, vol.30, Issue 2, pp.197-213, Feb., 2008. https://doi.org/10.1109/TPAMI.2007.1162
  9. Sun B., Kalyan S., Ravi R., Belhumeur P.N., Nayar S.K., "Time-Varying BRDFs," IEEE Trans. on Visualization and Computer Graphics, vol.13, Issue 3, pp.595-609, May, 2007. https://doi.org/10.1109/TVCG.2007.1013
  10. Vukusic P., Sambles J.R., "Photonic structures in biology," Nature 424, pp.852-855, 2003. https://doi.org/10.1038/nature01941
  11. Yinlong Sun, "Rendering biological iridescences with RGB-based renderers," ACM Trans. on Graphics, vol.25, Issue 1, pp.100-129, Jan., 2006. https://doi.org/10.1145/1122501.1122506
  12. Prusten Mark, "Photo-real rendering of bioluminescence and iridescence in creatures from the abyss," SPIE The Nature of Light, vol.7057, pp.70570D-70570D-9, 2008.
  13. Natalya Tatarchuk, Chris Brennan, "Simulation of Iridescence and Translucency on Thin Surfaces," http://ati.amd.com/developer/ShaderX2_Iridescence AndTranslucency.pdf, ATI Research.
  14. S Kinoshita, S Yoshioka and J Miyazaki, "Physics of structural colors," http://www.iop.org/EJ/article/0034-4885/71/7/076401/rpp8_7_076401.pdf, Jan. 2008.
  15. Shuichi K., "Structural Colors in the Realm of Nature," World Scientific Publishing Company, Oct. 2008.
  16. Guo W., Zhang Y., Han D., Li W., "A hybrid modeling method of Chinese ancient architecture," ACM VRCIA, No.25, 2008.
  17. P. E. Debevec, C. J. Taylor, and J. Malik, "Modeling and Rendering Architecture from Photographs: A Hybrid Geometry and Image Based Approach," In SIGGRAPH 96, Aug. 1996.
  18. Sae-Woon Ryu, Sang Hwa Lee, Sang Chul Ahn, and Jong-Il Park, "Tangible video teleconference system using real-time image-based relighting," IEEE Transactions on Consumer Electronics, vol.55, Issue 3, pp.1162-1168, August 2009. https://doi.org/10.1109/TCE.2009.5277971