DOI QR코드

DOI QR Code

전자기 로렌츠력을 이용한 다중안정성 마이크로 액추에이터의 비선형 구조 및 전기-열 해석

Multistable Microactuators Functioning on the Basis of Electromagnetic Lorentz Force: Nonlinear Structural and Electrothermal Analyses

  • 한정삼 (안동대학교 기계설계공학과)
  • Han, Jeong-Sam (Dept. of Mechanical Design Engineering, Andong Nat'l Univ.)
  • 투고 : 2010.03.16
  • 심사 : 2010.06.14
  • 발행 : 2010.08.01

초록

본 논문에서는 작동 평면상의 네 위치에서 사중안정점을 가지는 신개념 전자기형 마이크로 액추에이터의 구조체와 전자기 로렌츠력을 이용하는 구동 방식을 제시하고, 이의 타당성을 비선형 구조해석 및 전기-열해석을 통하여 검증하였다. 사중안정성 액추에이터의 구현을 위해서 관련 분야에서 널리 연구되고 있는 쌍안정성 액추에 이터의 개념을 확장 응용하였다. 비선형 유한요소해석을 이용하여 사중안정성 미소 구조체의 정적 해석과 과도동 적 해석을 수행함으로써 액추에이터 구조체의 다중안정성 유무를 파악하고 이 결과를 분석하여 구조체 설계에 반영하였다. 사중안정성 미소 구조체를 도체화하여 자기장 내에서 구조체에 전류를 통할 때에 발생하는 로렌츠력으로 평면상의 네 안정점으로 구조체를 구동할 수 있도록 고안하고, 그 때 필요한 구동전류의 크기 및 전자기 구동에 의한 주울열에 의한 온도분포를 계산하여 전반적인 타당성을 검토하였다. 본 논문은 지금까지의 관심 대상인 쌍안정성의 이용이 아니라 더욱 확장된 다중안정성을 가진 미소 액추에이터의 구조체와 전자기 구동방법을 제안하여 향후에 다중안정성을 필요로 하는 마이크로 시스템에 활용될 수 있도록 하는데 그 의미가 있다.

In this paper, the design and nonlinear simulation of a multistable electromagnetic microactuator, which provides four stable equilibrium positions within its operating range, have been discussed. Quadstable actuator motion has been made possible by using both X- and Y-directional bistable structures with snapping curved beams. Two pairs of the curved beams are attached to an inner frame in both X- and Y-directions to realize independent bistable behavior in each direction. For the actuation of the actuator at the micrometer scale, an electromagnetic actuation method in which Lorentz force is taken into consideration was used. By using this method, micrometer-stroke quadstability in a plane parallel to a substrate was possible. The feasibility of designing an actuator that can realize quadstable motion by using the electromagnetic actuation method has been thoroughly clarified by performing nonlinear static and dynamic analyses and electrothermal coupled-field analysis of the multistable microactuator.

키워드

참고문헌

  1. Han, J. S., 2007, ″Design, Simulation and Fabrication of a Quadstable Monolithic Mechanism,″ Transactions of the KSME A, 31(5), pp. 617-624. https://doi.org/10.3795/KSME-A.2007.31.5.617
  2. Qiu, J., Lang, J. H. and Slocum, A. H., 2004, ″A Curved-Beam Bistable Mechanism,″ J. Microelectro-Mech. Syst., Vol. 13, No. 2, pp. 137-146. https://doi.org/10.1109/JMEMS.2004.825308
  3. Qiu, J., Lang, J. H., Slocum, A. H. and Struempler, R., 2003, ″A High-Current Electrothermal Bistable MEMS Relay,″ Proc. IEEE MEMS 2003, pp. 64-67.
  4. Vangbo, M., 1998, ″An Analytical Analysis of a Compressed Bistable Buckled Beam,″ Sensors Actuators (A), Vol. 69, No. 3, pp. 212-216. https://doi.org/10.1016/S0924-4247(98)00097-1
  5. Vangbo, M. and Backlund, Y., 1998, ″A Lateral Symmetrically Bistable Buckled Beam,″ J. Micromech. Microeng., Vol. 8, pp. 29-32. https://doi.org/10.1088/0960-1317/8/1/005
  6. Schomburg, W. K. and Goll, C., 1998, ″Design Optimization of Bistable Microdiaphragm Valves,″ Sensors Actuators (A), Vol. 64, No. 3, pp. 259-264. https://doi.org/10.1016/S0924-4247(97)01612-9
  7. Song, G. E., Kim, J. S., Kim, K. H. and Lee, Y. P., 2004, ″Development and Analysis for Micro Actuator Using Buckling Membrane and Phase Change,″ Transactions of the KSME B, 28(6), pp. 638-645. https://doi.org/10.3795/KSME-B.2004.28.6.638
  8. Lee, J. H., Lee, M. L., Jang, W. I., Choi, C. A. and Joo, J. W., 1999, ″Bi-Stable Planar Polysilicon Micro-Actuators with Shallow Arch-Shaped Leaf Springs,″ Proc. SPIE, Vol. 3876, pp. 274-279. https://doi.org/10.1117/12.360505
  9. Jensen, B. D., Howell, L. L. and Salmon, L. G., 1999, ″Design of Two-Link, In-Plane, Bistable Compliant Micro-Mechanisms,″ J. Mech. Des., Vol. 121, No. 3, pp. 416-423. https://doi.org/10.1115/1.2829477
  10. Gomm, T., Howell, L. L. and Selfridge, R. H., 2002, ″In-Plane Linear Displacement Bistable Microrelay,″ J. Micromech. Microeng., Vol. 12, pp. 257-264. https://doi.org/10.1088/0960-1317/12/3/310
  11. Masters, N. D. and Howell, L. L., 2003, ″A Self-Retracting Fully-Compliant Bistable Micromechanism,″ J. Microelectromech. Syst., Vol. 12, pp. 273-280. https://doi.org/10.1109/JMEMS.2003.811751
  12. Hwang, I. H., Shim, Y. S. and Lee, J. H., 2003, ″Modeling and Experimental Characterization of the Chevron-Type bi-Stable Microactuator,″ J. Micromech. Microeng., Vol. 13, pp. 948-954. https://doi.org/10.1088/0960-1317/13/6/318
  13. Casals-Terre, J. and Shkel, A. M., 2004, ″Dynamic Analysis of a Snap-Action Micromechanism,″ IEEE Sensors, Vienna, Oct. 2004, pp. 1245-1248.
  14. Goll, C., Bacher, W., Bustgens, B., Maas, D., Menz, W. and Schomburg, W. K., 1996, ″Microvalves with Bistable Buckled Polymer Diaphragms,″ J. Micromech. Microeng., Vol. 6, pp. 77-79. https://doi.org/10.1088/0960-1317/6/1/017
  15. Halg, B., 1990, ″On a Nonvolatile Memory Cell Based on Micro-Electro-Mechanics,″ Proc. IEEE Micro Electro Mechanical Systems Workshop, pp 172-176.
  16. Hoffman, M., Kopka, P. and Voges, E., 1999, ″Bistable Micromechanical Fiber-Optic Switches on Silicon with Thermal Actuators,″ Sensors Actuators (A), Vol. 78, No. 1, pp. 28-35. https://doi.org/10.1016/S0924-4247(99)00200-9
  17. Brenner, M. P., Lang, J. H., Li, J., Qiu, J. and Slocum, A. H., 2003 ″Optimal Design of a Bistable Switch,″ PNAS, Vol. 100, No. 17, pp. 9663-9667. https://doi.org/10.1073/pnas.1531507100
  18. Ko, J. S., Lee, M. L., Lee, D. S., Choi, C. A., and Kim, Y. T., 2002, ″Development and Application of Laterally Driven Electromagnetic Microactuator,″ Appl. Phys. Lett., 81, pp. 547-549. https://doi.org/10.1063/1.1494462
  19. Han, J. S., Ko, J. S., Kim, Y. T. and Kwak, B. M., 2002, ″Parametric Study and Optimization of a Micro-Optical Switch with a Laterally Driven Electromagnetic Microactuator,″ J. Micromech. Microeng., Vol. 12, pp. 939-947. https://doi.org/10.1088/0960-1317/12/6/326
  20. Akiyama, T., Staufer, U. and deRooij, N. F., 2000, "Atomic Force Microscopy Using an Integrated Comb-Shape Electrostatic Actuator for High-Speed Feedback Motion," Appl. Phys. Lett., Vol. 76, No. 21, pp. 31-41. https://doi.org/10.1063/1.125646
  21. Jeong, O. C. and Yang, S. S., 2000, "Fabrication and Test of a Thermopneumatic Micropump with a Corrugated $p^+$ Diaphram," Sensors Actuators (A), Vol. 83, pp. 249-255. https://doi.org/10.1016/S0924-4247(99)00392-1
  22. Debeda, H., Freyhold, T. V., Mohr, J., Wallrabe, U. and Wengelink, J., 1999, "Development of Miniaturized Piezoelectric Actuators for Optical Applications Realized Using LIGA Technology," J. Microelectromech. Syst., Vol. 8, No. 3, pp. 258-263. https://doi.org/10.1109/84.788629
  23. ANSYS, 2003, ANSYS Theory Reference 7.1, (ANSYS Inc).