DOI QR코드

DOI QR Code

EDTA Surface Capped Water-Dispersible ZnSe and ZnS:Mn Nanocrystals

  • Lee, Jae-Woog (Department of Chemistry, Center for Photofunctional Energy Materials (GRRC), Dankook University) ;
  • Lee, Sang-Min (Department of Chemistry, Center for Photofunctional Energy Materials (GRRC), Dankook University) ;
  • Huh, Young-Duk (Department of Chemistry, Center for Photofunctional Energy Materials (GRRC), Dankook University) ;
  • Hwang, Cheong-Soo (Department of Chemistry, Center for Photofunctional Energy Materials (GRRC), Dankook University)
  • Received : 2010.03.15
  • Accepted : 2010.05.25
  • Published : 2010.07.20

Abstract

ZnSe and ZnS:Mn nanocrystals were synthesized via the thermal decomposition of their corresponding organometallic precursors in a hot coordinating solvent (TOP/TOPO) mixture. The organic surface capping agents were substituted with EDTA molecules to impart hydrophilic surface properties to the resulting nanocrystals. The optical properties of the water-dispersible nanocrystals were analyzed by UV-visible and room temperature solution photoluminescence (PL) spectroscopy. The powders were characterized by X-ray diffraction (XRD), high resolution transmission electron microscopy (HR-TEM), and confocal laser scanning microscopy (CLSM). The solution PL spectra revealed emission peaks at 390 (ZnSe-EDTA) and 597 (ZnS:Mn-EDTA) nm with PL efficiencies of 4.0 (former) and 2.4% (latter), respectively. Two-photon spectra were obtained by fixing the excitation light source wavelengths at 616 nm (ZnSe-EDTA) and 560 nm (ZnS:Mn-EDTA). The emission peaks appeared at the same positions to that of the PL spectra but with lower peak intensity. In addition, the morphology and sizes of the nanocrystals were estimated from the corresponding HR-TEM images. The measured average particle sizes were 5.4 nm (ZnSe-EDTA) with a standard deviation of 1.2 nm, and 4.7 nm (ZnS:Mn-EDTA) with a standard deviation of 0.8 nm, respectively.

Keywords

References

  1. Alivisatos, P. J. Phys. Chem. 1996, 100, 13226. https://doi.org/10.1021/jp9535506
  2. Goldman, E. R.; Balighian, H.; Mattoussi, M. K.; Mauro, J. M.; Tran, P. T.; Anderson, G. P. J. Am. Chem. Soc. 2002, 124, 6378. https://doi.org/10.1021/ja0125570
  3. Jaiswal, J. K.; Mattoussi, H.; Mauro, J. M.; Simon, S. M. Nature Biotechnol. 2002, 21, 47. https://doi.org/10.1038/nbt767
  4. Milliron, D. J.; Alivisatos, A. P.; Pitois, C.; Edder, C.; Frechet, J. M. J. Adv. Mater. 2003, 15, 58. https://doi.org/10.1002/adma.200390011
  5. Pereiro, R.; Sanz-Medel, A.; Chang, W. H.; Parak, W. J. Mater. Chem. 2007, 17, 1343. https://doi.org/10.1039/b618902d
  6. Hines, M. A.; Guyot-Sionnest, P. J. Phys. Chem. B 1998, 102, 3655. https://doi.org/10.1021/jp9810217
  7. Revaprasadu, N.; Malik, M. A.; O’Brien, P. J. Mater. Chem. 1998, 8, 1885. https://doi.org/10.1039/a802705f
  8. Chestnoy, N.; Hull, R.; Brus, L. E. J. Chem. Phys. 1986, 85, 2237. https://doi.org/10.1063/1.451119
  9. Song, K. K.; Lee, S. H. Curr. Appl. Phys. 2001, 1, 169. https://doi.org/10.1016/S1567-1739(01)00012-8
  10. Hwang, C. -S.; Cho, I. H. Bull. Kor. Chem. Soc. 2005, 26, 1776. https://doi.org/10.5012/bkcs.2005.26.11.1776
  11. Hwang, J. M.; Oh, M. O.; Kim, I.; Lee, J. K.; Ha, C.-S. Curr. Appl. Phys. 2005, 5, 31. https://doi.org/10.1016/j.cap.2003.11.075
  12. Hwang, C.-S.; Lee, N. R.; Kim, Y. A. and Park, Y. B. Bull. Kor. Chem. Soc. 2006, 27, 1809. https://doi.org/10.5012/bkcs.2006.27.11.1809
  13. Lee, J. H.; Kim, Y. A.; Kim, K. M.; Huh, Y. D.; Hyun, J. W.; Kim, H. S.; Noh, S. J.; Hwang, C. -S. Bull. Kor. Chem. Soc. 2007, 28, 1091. https://doi.org/10.5012/bkcs.2007.28.7.1091
  14. Mattousi, H.; Mauro, J. M.; Goldman, E. R.; Anderson, G. P.; Sundar, V. C.; Mikulec, F. V.; Bawendi, M. G. J. Am. Chem. Soc. 2000, 122, 12142. https://doi.org/10.1021/ja002535y
  15. Chan, W. C. W; Nie, S. Science 1998, 281, 2016; Alivisatos, P. Science 1996, 271, 933. https://doi.org/10.1126/science.271.5251.933
  16. Gerion, D.; Pinaud, F.; Williams, S. C.; Parak, W. J.; Zanchet, D.; Weiss, S.; Alivisatos, A. P. J. Phys. Chem. B 2001, 195, 8861.
  17. Chen, C. C.; Yet, C. P.; Wang, H. N.; Chao, C. Y. Langmuir 1999, 15, 6845. https://doi.org/10.1021/la990165p
  18. Mitchell, G. P.; Mirkin, C. A.; Letsinger, R. L. J. Am. Chem. Soc. 1999, 121, 8122. https://doi.org/10.1021/ja991662v
  19. Jaiswal, J. K.; Mattoussi, H.; Mauro, J. M.; Simon, S. M. Nature Biotechnol. 2002, 21, 47. https://doi.org/10.1038/nbt767
  20. Xin, R.; Ren, F.; Leng, Y. Mater. Des. 2010, 31, 1691. https://doi.org/10.1016/j.matdes.2009.01.048
  21. Lee, T. M. J. Mater. Sci. 2006, 17, 15.
  22. Xin, B. P.; We, J.; Guo, L. J. Inorg. Chem. 2009, 25, 774.
  23. Melhuish, W. H. J. Phys. Chem. 1961, 65, 229. https://doi.org/10.1021/j100820a009
  24. Williams, A. T. R.; Winfield, S. A.; Miller, J. N. Analyst 1983, 108, 1067. https://doi.org/10.1039/an9830801067
  25. Yi, G.; Sun, B.; Yang, F.; Chen, D. J. Mater. Chem. 2001, 11, 2928. https://doi.org/10.1039/b108394e
  26. Kumbhokjar, N.; Mahamuni, S.; Leppert, V.; Risbud, S. H. Nanostruc. Mater. 1998, 10, 117. https://doi.org/10.1016/S0965-9773(98)00055-5
  27. Dong, B.; Cao, L.; Su, G.; Liu, W.; Zhai, H. J. Alloys and Comp. 2010, 429, 363.
  28. Bhargava, R. N.; Gallagher, D.; Hong, X.; Nurmikko, A. Phys. Rev. Lett. 1994, 72, 416. https://doi.org/10.1103/PhysRevLett.72.416
  29. Breus, V. V.; Heys, C. D.; Nienhaus, G. U. J. Phys. Chem. 2007, 111, 18589.
  30. Satzinger, V.; Schmidt, V.; Kuna, L. Micro. Opt. 2008, 17, 6992.
  31. Zheng, L.; Zhang, Z. X. Prog. Biochem. Biophys. 2008, 35, 584.
  32. Ryczkowski, J. Appl. Suf. Sci. 2005, 252, 813. https://doi.org/10.1016/j.apsusc.2005.02.056
  33. Nakamoto, K. Infrared and Raman Spectra of Inorganic and Coordination Compounds, 5th ed.; Wiley: 1997; Ch. 10.
  34. Kim, J. E.; Hwang, C.-S.; Yoon, S. W. Bull. Kor. Chem. Soc. 2008, 29, 1247. https://doi.org/10.5012/bkcs.2008.29.6.1247

Cited by

  1. Synthesis of a White-Light-Emitting ZnSe:Mn Nanocrystal via Thermal Decomposition Reaction of Organometallic Precursors vol.34, pp.1, 2013, https://doi.org/10.5012/bkcs.2013.34.1.321
  2. Adsorption Mechanism Study of Magnetic EDTA-Chitosan on Cu (II) Ions of Solution vol.937, pp.1662-8985, 2014, https://doi.org/10.4028/www.scientific.net/AMR.937.218
  3. A comparative study of the isoelectronic Cd and Hg substitution in EDTA-capped ZnS nanocrystals vol.30, pp.14, 2010, https://doi.org/10.1007/s10854-019-01682-6