Effects of NaCl Concentration on the Growth of Native Willow Species Collected in a Coastal Reclaimed Land

간척지 자생 버드나무의 NaCl 농도별 생육반응

  • Yeo, Jin-Kie (Department of Forest Resources Developement, Korea Forest Research Institute) ;
  • Park, Jung-Hyun (Department of Forest Resources Developement, Korea Forest Research Institute) ;
  • Koo, Yeong-Bon (Department of Forest Resources Developement, Korea Forest Research Institute) ;
  • Kim, Hyun-Chul (Department of Forest Resources Developement, Korea Forest Research Institute) ;
  • Shin, Han-Na (Department of Forest Resources Developement, Korea Forest Research Institute)
  • 여진기 (국립산림과학원 산림자원육성부) ;
  • 박정현 (국립산림과학원 산림자원육성부) ;
  • 구영본 (국립산림과학원 산림자원육성부) ;
  • 김현철 (국립산림과학원 산림자원육성부) ;
  • 신한나 (국립산림과학원 산림자원육성부)
  • Received : 2009.11.03
  • Accepted : 2010.04.09
  • Published : 2010.04.30

Abstract

This study was conducted to investigate the potentials for the forest restoration on reclaimed land by using willow trees (Salix koreensis Anderson) selected from a coastal reclaimed land made in inside of the Sihwa tide embankment. We first collected six individual willow trees that were the only tree species grown in the reclaimed land. Total 7 clones from cuttings of the collected trees and the control were grown in a greenhouse for two months prior to applying the different concentrations of NaCl solutions (0.0%, 0.1%, 0.5%, and 1.0%). One month after the NaCl application, the survival rates of clones from both the collected trees, and the control were significantly decreased in a NaCl dose-dependent manner. However, there was no significant difference between the collected trees and the control in terms of survival rate, hight and diameter of cuttings, and the numbers of leaves in greenhouse condition. In conclusion, the willow trees collected from the coastal reclaimed land showed no tolerance against NaCl compared to the control grown in ordinary soil, suggesting that further study is required to determine what the most important factor is to select salt tolerant tree species.

본 연구는 간척지에 자생하는 버드나무 (Salix koreensis Anderson)를 대상으로 염분에 대한 내성의 범위를 조사하기 위해 수행되었다. 간척지에서 선발된 버드나무 6개체의 가지를 잘라 온실에서 삽목하여 2개월이 경과한 다음부터 NaCl 0.1%, 0.5%, 1.0% 용액과 지하수를 1개월간 관수하면서 재배하였다. 0.1% 및 지하수 처리구에서 전체 묘목의 생존율은 100%인 반면 0.5% 및 1.0% 처리구에서는 각각 73.2% 및 58.8%로 감소하였다. 0.1%와 지하수 처리구간의 묘고와 근원경 생장은 차이를 보이지 않았고 엽수는 실험기간동안 꾸준히 증가하는 경향을 보였다. 반면 0.5% 및 1.0% 처리구에서 묘고 생장은 지하수 처리구에 비해 각각 43.8% 및 88.9% 감소하였다. 0.5% 및 1.0% 처리구 묘목의 잎은 스트레스로 갈변하고 조기 낙엽되었다. 본 연구에 사용된 버드나무는 온실에서의 NaCl 처리결과 해안간척지에서 자생하는 개체임에도 불구하고 일반 임지에서 자생하는 버드나무보다 염분에 대한 내성 능력이 크지는 않은 것으로 추정된다.

Keywords

References

  1. Adams, M.A., A. Richter, A.K. Hill, and T.D. Colmer. 2005. Salt tolerance in Eucalyptus spp.: identity and response of putative osmolytes, Plant Cell Environ. 28:772-787. https://doi.org/10.1111/j.1365-3040.2005.01328.x
  2. Choi, S.H., H.I. Kim, Y.Ahn, J.R. Jang, and J.M. Oh. 2004. Salinity effects on growth and yield components of rice. Korean J. Limnol. 37:248-254.
  3. Choung, J.I., J.C. Ko, S.Y. Lee, T.O. Kwon, and D.J. Lee. 2003. Effects of NaCl treatment on absorption of inorganic nutrients and growth in rice. Korean J. Crop Sci. 48:465-468.
  4. Choung. J.I., S.J. Yu, M.K. Oh, N.H. Beak, J.K. Ko, and J.K. Lee. 2002. Varietal responses of rice growth and yield to soil salt content. Korean J. Crop Sci. 47:422-426.
  5. Eun, J.S. 2004 . In vitro selection of salt tolerance by mature embryo culture in oriza sativa L. Bulletin of the agricultural college, Chonbuk National University. 35:27-34.
  6. FAO. 2005. Global Network on Integrated Soil Management for Sustainable Use of Salt-affected Soils. Rome, Italy: FAO Land Plant Nutrition Management Service. http://www.fao.org/ag/agl/agll/spush.
  7. GARES. 2008. Methods of soil and compost analysis. Gyeonggido Agricultural Research and Extension Services, Hwaseong, Korea.
  8. Ghoulam, C., A. Foursy, and K. Fares . 2002. Effects of salt stress on growth, inorganic ions and proline accumulation in relation to osmotic adjustment in five sugar beet cultivars. Environ. Exp. Bot. 47:39-50. https://doi.org/10.1016/S0098-8472(01)00109-5
  9. Gosta, L., H. Niklas, and L. Bulow. 1996. Enhanced NaCl stress tolerance in transgenic tobacco expressing bacterial chorine dehydrogenase. Bio. Technology 14:177-180. https://doi.org/10.1038/nbt0296-177
  10. Greenway, H., and R. Munns. 1980. Mechanism of salt tolerance in nonhalophytes. Annu. Rev. Plant Physiol. 31:130-149.
  11. Gucci, R., and M. Tattini. 1997. Salinity tolerance in olive. Hortic. Rev. 21:177-214.
  12. Kramer, P.J., and T.T. Kozlowski. 1979. Physiology of Woody Plants. Academic Press Inc. pp811.
  13. Kratsch H, S. Olsen, L. Rupp, G. Cardon, and R. Heflebower. 2008. Soil Salinity and Ornamental Plant Selection. Utah State University. pp8.
  14. Lee, K.S., S.Y. Choi, and W.Y. Choi. 1999. Salt Tolerance of Rice during Germination and Early Seedling Stages. Korean J. Breed Sci. 31:301-305.
  15. Lee, S.H., B.D. Hong, Y. An, and H.M. Ro. 2003. Relation between growth condition of six upland-crops and soil salinity in reclaimed land. Korean J. Soil Sci. Fert. 36:66-71.
  16. Leidi, E.O., and J.F. Saiz. 1997. Is salinity tolerance related to Na accumulation in upland cotton (Gossypium hirsutum) seedlings? Plant Soil. 190:67-75. https://doi.org/10.1023/A:1004214825946
  17. Linghe Zeng, S.M. Lesch, and C.M. Grieve. 2003. Rice growth and yield respond to changes in water depth and salinity stress. Agricultural Water Management. 59:67-75. https://doi.org/10.1016/S0378-3774(02)00088-4
  18. Licht, L.A., and J.G. lsebrands. 2005. Linking phytoremediated pollutant removal to biomass economic opportunities. Biomass Bioenerg. 28:203-218. https://doi.org/10.1016/j.biombioe.2004.08.015
  19. Miller, R.W., and R.L. Donahue. 1990. An introduction to soils and plant growth. Prentice-Hall. 768pp.
  20. Phleger, C.F. 1971. Effect of salinity on growth of a salt marsh grass. Ecology. 52:908-911. https://doi.org/10.2307/1936042
  21. Seneca, E.D. 1972. Seedling response to salinity in four dune grasses from the cuter banks of North Carolnia. Ecology. 53:465-471. https://doi.org/10.2307/1934234
  22. Shannom, M.C., J.D. Rhoades, James E. Hill, S.C. Scardaci, and M.D. Spyres. 1998. Assessment of salt tolerance in rice cultivars in response to salinity problems in California. Crop Sci. 38:394-398. https://doi.org/10.2135/cropsci1998.0011183X003800020021x
  23. Shin, S.H., Y.M. Lee, and B.H. Cho. 2004. Amino acid and protein contents in the seedlings of salt-tolerant and salt-susceptible rice cultivars. Korean J. Breed. 36:320-325.
  24. Song, J.Y., D.S. Kim, G.J. Lee, I.S. Lee, K.K. Kang, S.J. Yun, and S.Y. Kang. 2007. Characterization of salt tolerant rice mutant lines derived from azetidine-2-carboxylic acid resistant cell lines induced by gamma ray irradiation. J. Plant Biotechnol. 34:61-68. https://doi.org/10.5010/JPB.2007.34.1.061
  25. Tagwa, T., and N. Ishizaka. 1963. Physiological studies on the tolerance of rice plants to salinity. II effects of salinity on the absorption of water and chloride ion. Jap. J. Crop. Sci. 31:337-341. https://doi.org/10.1626/jcs.31.337
  26. Ungar, I.A, 1996. Effect of salinity on seed germination, growth. and ion accumulation of Atriptex patula (Chenopodiaceae). Am. J. Bot. 83:604-607. https://doi.org/10.2307/2445919
  27. Wang, L.W., A.M. Showalter, and I.A. Ungar. 1997. Effect of salinity on growth, ion content. and cell wall chemistry in Atriplex prostrate (Chenopodiaceae). Am. J. Bot. 84:1247-1255. https://doi.org/10.2307/2446049
  28. Yeo, J.K., Y.B. Koo, and I.S. Kim. 1999. Effect of NaCl salinity on growth and catlouaccumulation of 5 poplar species. Fri J. Forest Sci. 61:9-17.
  29. Yermiyahu, U., S. Nir, G. Ben-Hayyim, U. Kafkafi. and T.B. Kinraide. 1997. Root elongation in saline solution related to calcium binding to root cell plasma membranes. Plant Soil. 191:67-76. https://doi.org/10.1023/A:1004241506347
  30. 박석. 김수석. 2005. 휴경농지의 실태와 정책방향. 한국농촌경제연구원. pp92.