Water Use Efficiency of Barley, Wheat and Millet Affected by Groundwater Table under Lysimeter

라이시미터에서 지하수위에 따른 보리, 밀, 조의 수분이용효율 특성

  • Kim, Beom-Ki (Department of Agricultural Chemistry, Chungbuk National University) ;
  • Gong, Hyo-Young (Department of Agricultural Chemistry, Chungbuk National University) ;
  • Shim, Jae-Sig (Department of Agricultural Chemistry, Chungbuk National University) ;
  • Hong, Soon-Dal (Department of Agricultural Chemistry, Chungbuk National University)
  • Received : 2010.01.21
  • Accepted : 2010.02.01
  • Published : 2010.06.30

Abstract

This experiment was conducted to evaluate water use efficiency of barley, wheat, and millet as a substitution crop for rice of fallow paddy field. Dry weight (DW), evapotranspiration, and transpiration of crop grown on the lysimeters controlled with 5 levels of groundwater table (GWT), 0, 25, 50, 75, and 100 cm were evaluated for optimum GWT and water use efficiency. All the lysimeters randomized with four replication arrangements were filled up sandy loam and were adjusted to the constant bulk density treated with twice water infiltration from bottom side to upper side of lysimeter. DW of barley, wheat, and millet in the plot of 0cm GWT that is saturated soil showed 34.9%, 44.7%, and 37.1% of that in the plot of 100 cm GWT, respectively showing a serious obstacle in crop growth. Evapotranspiration ratios calculated by evapotranspiration volume (mL) per DW were 166~605 mL for barley, 136~481 mL for wheat, and 81~418 mL for millet showing the order of barley > wheat > millet. Evapotranspiration ratio was increased with decrease of groundwater table that is the condition of moisture saturation. Estimation of GWT for maximum DW of wheat was 76 cm, and those of barley and millet were 100 cm below. The volumetric moisture content of lysimeter soil with cropping was markedly decreased as increase of crop growth because moisture supplying capability by capillary rise of water was less than amount of moisture required by crop.

본 연구는 휴경논 벼 대체작물로서 보리, 밀, 조의 수분스트레스에 대한 생육특성을 비교하기 위하여 실시하였다. 라이시미터를 이용하여 지하수위를 0, 25, 50, 75, 100 cm의 5개 수위로 처리하여 지하수위에 따른 생체량과 증발산량 및 증산량을 조사하고 수분이용효율 특성과 작물별 적정 지하수위를 추정하였다. 보리, 밀, 조 모든 작물은 과습에 대한 내성이 약하였으며 작물별로는 보리 > 조 > 밀의 순이었다. 지상부 건물중 1 g을 생산하는데 소요된 증발산량으로 나타낸 증발산비율로 비교할 경우 보리는 166~605 mL, 밀은 136~481 mL, 조는 81~418 mL의 분포로서 보리 > 밀 > 조의 순이었고 100 cm 지하수위에서 0 cm 지하수위로, 즉 수분포화 조건으로 갈수록 증발산 비율은 증가되었다. 지하수위에 따른 지상부 건물중의 회귀식으로부터 최대 건물중을 나타내는 지하수위는 밀이 76 cm로 평가되었고 보리와 조의 경우는 지하수위가 낮아질수록 거의 직선적으로 증가되는 경향을 보이며 처리구 시험범위 밖인 100 cm 이하로 평가되었다. 작물 재배기간 동안 토양의 용적수분 함량은 작물에 의한 수분흡수량만큼 모세관을 통한 수분공급량이 부족하여 재배기간이 경과할수록 급격하게 감소되는 경향을 보였다.

Keywords

References

  1. 농림통계연보, 2008. 농림수산식품부.
  2. 보리재배. 표준영농교본 118. 2001. 농촌진흥청. pp. 33-38, 191-203.
  3. 작물별 시비처방기준. 2006. 농촌진흥청.
  4. 통계정보시스템. 2009. 한국농촌경제연구원 농업관측정보센터. http://krei.re.kr/kor/agreport/grain/yoyak.php.
  5. Armeen, R.K., O.S. Claudio, and R.H. David. 2005. Transpiration-use efficiency of barley. Agricultureal and forest meteorology 130: 1-11 . https://doi.org/10.1016/j.agrformet.2005.01.003
  6. Belryn, G.P. and J.P. Miksche. 1976. Botanical microtechnique and cytochemistry. The Iowa State Univ. Press, Ames, Iowa, USA
  7. Crawford, R.M.M. 1997. Tolerance of anoxia and ethanol metabolism in germinating seeds. New Phytol. 79:511-517.
  8. Drew, M.C. and E.J. Sisworo. 1979. The development of waterlogging damage in young barley plants in relation to plant nutrient status and changes in soil properties. New Physiol. 82 :301-314. https://doi.org/10.1111/j.1469-8137.1979.tb02656.x
  9. Hong, S.D., J.J. Kim, S.J . Cho, and Y.H. Lee. 1989. The interrelationships between yield, transpiration of the tobacco plant, and seasonal meteorological factors during the growing season. Korean J. Soil Sci. Fert. 22:228-233.
  10. Hwang, J.M., G.S. Tae, and J. S. Uom. 2003. Changes of soil water balance and growth of red paper as affected by growing conditions in the plastic house. Korean J. Bio-Environment Control. 12:38-44.
  11. Kang, Y.K., A.R. Richard, and G.C. Anthony. 1996. Interactions among carbon isotope discrimination, water use efficiency and nutrogen nutrition in wheat and berley. Korean J. Crop Sci. 41 :318-331.
  12. Kemper, W.D., C.W. Robbinson., and H. J. Bolus. 1961. Growth rates of barley and com as affected by changes in soil moisture stress. Soil Sci. 91 :332-338. https://doi.org/10.1097/00010694-196105000-00009
  13. Lee, H.S. and J.H. Ku. 1995. Effect of water table depth in different soil texture on quality of barley and wheat grain. Korean J. Crop Sci. 40: 195-202.
  14. Levitt, J. 1980. Response of plants to environmental stresses. Academic press. pp 266-288.
  15. Locascio, SJ. and A.G. Smajstrla. 1996. Water application scheduling pan evaporation for drip-irrigated tomato. J. Amer. Soc. Hort. Sci. 121:63-68 .
  16. Norrie. J., M.E.D. Graham., and A. Gosselin. 1994. Potential evapotranspiration as a means of predicting irrigation timing in greenhouse tomatoes grown in peat bags. J. Amer. Soc. Hort. Sci. 119: 163-168.
  17. Pilbeam, C.J., L.P. Simmonds., and A.W. Kavilu. 1995. Transpiration efficiencies of maize and beans in semiarid Kenya. Field crops reaserch 41: 179-188. https://doi.org/10.1016/0378-4290(95)00011-E
  18. Salisbury, F.B. and C.W. Ross. 1992. Plant physiology (4th ed.). Wadsworth, Inc., Belmont, California. pp 27-65.
  19. Suh. H.S. 1971. Studies on the wet-injury resistance of wheat and barley varieties. Korean J. Breeding 3:98-106.
  20. Topp, G.C., M. Yanuka., W.D. Zebchul., and S. Zegelin. 1988. Determination of electrical conductivity using time domain reflectometry: Soil and water experiments in coaxial lines. Water Resour. Res. 24:945-952. https://doi.org/10.1029/WR024i007p00945
  21. Trought, M.C.T. and M.C. Drew. 1980. The development of waterlogging damage in wheat seedlings (Triticum aestivum L.). II. Accumulation and redistribution of nutrient by shool. Plant Soil. 56:187-199. https://doi.org/10.1007/BF02205847