Assessment of Green House Gases Emissions using Global Warming Potential in Upland Soil during Pepper Cultivation

고추재배에서 지구온난화잠재력 (Global Warming Potential)을 고려한 토성별 온실가스 발생량 종합평가

  • Kim, Gun-Yeob (National Academy of Agricultural Science(NAAS), RDA) ;
  • So, Kyu-Ho (National Academy of Agricultural Science(NAAS), RDA) ;
  • Jeong, Hyun-Cheol (National Academy of Agricultural Science(NAAS), RDA) ;
  • Shim, Kyo-Moon (National Academy of Agricultural Science(NAAS), RDA) ;
  • Lee, Seul-Bi (National Academy of Agricultural Science(NAAS), RDA) ;
  • Lee, Deog-Bae (National Academy of Agricultural Science(NAAS), RDA)
  • 김건엽 (농촌진흥청 국립농업과학원) ;
  • 소규호 (농촌진흥청 국립농업과학원) ;
  • 정현철 (농촌진흥청 국립농업과학원) ;
  • 심교문 (농촌진흥청 국립농업과학원) ;
  • 이슬비 (농촌진흥청 국립농업과학원) ;
  • 이덕배 (농촌진흥청 국립농업과학원)
  • Received : 2010.11.15
  • Accepted : 2010.12.20
  • Published : 2010.12.31

Abstract

Importance of climate change and its impact on agriculture and environment have increased with a rise of greenhouse gases (GHGs) concentration in Earth's atmosphere, which caus an increase of temperature in Earth. Greenhouse gas emissions such as carbon dioxide ($CO_2$), methane ($CH_4$) and nitrous oxide ($N_2O$) in the Upland field need to be assessed. GHGs fluxes using chamber systems in two upland fields having different soil textures during pepper cultivation (2005) were monitored under different soil textures at the experimental plots of National Academy of Agricultural Science (NAAS), Rural Development Administration (RDA) located in Suwon city, Korea. $CO_2$ emissions were 12.9 tonne $CO_2\;ha^{-1}$ in clay loam soil and 7.6 tonne $CO_2\;ha^{-1}$ in sandy loam soil. $N_2O$ emissions were 35.7 kg $N_2O\;ha^{-1}$ in clay loam soil and 9.2 kg $N_2O\;ha^{-1}$ in sandy loam soil. $CH_4$ emissions were 0.054 kg $CH_4\;ha^{-1}$ in clay loam soil and 0.013 kg $CH_4\;ha^{-1}$ in sandy loam soil. Total emission of GHGs ($CO_2$, $N_2O$, and $CH_4$) during pepper cultivation was converted by Global Warming Potential (GWP). GWP in clay loam soil was higher with 24.0 tonne $CO_2$-eq. $ha^{-1}$ than that in sandy loam soil (10.5 tonne $CO_2$-eq. $ha^{-1}$), which implied more GHGs were emitted in clay loam soil.

농경지에서 발생되는 온실가스인 $CO_2$, $CH_4$ 그리고 $N_2O$의 배출량을 토성별 지구온난화잠재력으로 평가하기 위하여 수원시에 위치한 국립농업과학원 기후변화생태과 시험포장에서 온실가스 배출시험을 수행하였다. 고추밭에서 온실가스배출 시험은 2005년에 노지재배로 재배하였다. 시비는 화학비료와 돈분퇴비를 시용하였으며, 식양토와 사양토에서 온실가스배출에 영향을 주는 토양수분과 토양온도 등 관련 요인별로 온실가스배출량을 측정하였다. 이와 같이 고추밭에서 $CO_2$, $CH_4$, $N_2O$의 배출량을 확인하고, 지구온난화잠재력으로 환산한 온실가스의 양을 파악하여 온실가스 관리에 필요한 기초 자료로 활용하고자 하였다. 시험한 결과는 다음과 같다. (1) 토성에 따른 $CO_2$배출량은 식양토는 12.9 tonne $CO_2\;ha^{-1}$, 사양토는 7.6 tonne $CO_2\;ha^{-1}$로 나타났다. $N_2O$ 배출량은 식양토 35.7 kg $N_2O\;ha^{-1}$, 사양토 9.2 kg $N_2O\;ha^{-1}$로 나타났으며, $CH_4$ 배출량은 식양토에서 0.054 kg $CH_4\;ha^{-1}$, 사양토 0.013 kg $CH_4\;ha^{-1}$였다. (2) $CO_2$, $CH_4$, $N_2O$의 총 배출량을 지구온난화잠재력 (GWP-Global Warming Potential)으로 환산한 결과, 식양토에서 24.0 tonne $CO_2$-eq $ha^{-1}$, 사양토에서는 10.5 tonne $CO_2$-eq. $ha^{-1}$로 식양토에서 많은 온실가스 배출량을 보였다.

Keywords

References

  1. Arone, J.A. and P.J. Bohlen. 1998. Stimulated $N_{2}O$ flux from intact grassland monoliths after two growing seasons under elevated atmospheric $CO_{2}$. Oecologia. 116:331-335. https://doi.org/10.1007/s004420050594
  2. Denmead, O.T. 1979. Chamber systems for measuring nitrous oxide emission from soils in the field. Soil Sci. Soc. of American J. 43:89-95. https://doi.org/10.2136/sssaj1979.03615995004300010016x
  3. Dilustro, J., B. Collins, L. Duncan, and C. Crawford. 2005. Moisture and soil texture effects on soil $CO_{2}$ efflux components in southeastern mixed pine forests. Forest Ecology and Management 204:85-95.
  4. Godde, M. and R. Conrad. 1999. Immediate and adaptational temperature effects on nitric oxide production and nitrous oxide release from nitrification and denitrification in two soils. Biol. Fertil. Soils 30:33-40. https://doi.org/10.1007/s003740050584
  5. GPG (Good Practice Guidance). 2003. Good Practice Guidance for Land Use, Land-Use Change and Forestry, GPG.
  6. Hou, A., H. Akiyama, Y. Nakajima, S. Sudo, and H. Tsuruta. 2000. Effects of urea form and soil moisture on $N_{2}O$ and NO emissions from Japanese Andosols. Chemosphere - Global Change Science 2:321-327. https://doi.org/10.1016/S1465-9972(00)00025-8
  7. IPCC. 1996. Revised IPCC guideline for national greenhouse gas inventories: Reference Manual, revised in 1996, IPCC.
  8. Kim, G.Y., B.H. Song, B.K. Hyun, and K.M. Shim. 2006. Predicting $N_{2}O$ emission from upland cultivated with pepper through related soil parameters. Korean J. Soil Sci. Fert. 39:253-258.
  9. Kim, G.Y., S.I. Park, B.H. Song, and Y.K. Shin. 2002. Emission characteristics of methane and nitrous oxide by management of water and nutrient in rice paddy soil. Korean Journal of Environ. Agri. 21:136-143. https://doi.org/10.5338/KJEA.2002.21.2.136
  10. Kim, G.Y., B.H. Song, S.Y. Hong, B.G. Ko, K.A. Roh, K.M. Shim, and Y.S. Zhang. 2008a. Evaluation of $CO_{2}$ Emission to Changes of Soil Water Content, Soil Temperature and Mineral N with Different Soil Texture in Pepper Cultivation. J. Soil Sci. Fert. 393-398.
  11. Kim, G.Y., B.H. Song, K.A. Roh, S.Y. Hong, B.G. Ko, K.M. Shim, and K.H So. 2008b. Evaluation of Green House Gases Emissions According to Changes of Soil Water Content, Soil Temperature and Mineral N with Different Soil Texture in Pepper Cultivation. J. Soil Sci. Fert. 399-407.
  12. Kleber, M. 1997. Carbon exchange in humid grassland soils, University Hohenheim. 1-264.
  13. Koizumi H., M. Kontturi, S. Mariko, T. Nakadai, Y. Bekku, and T. Mela. 1999. Soil Respiration in three soil types in agricultural ecosystems in Finland. Acta Agriculturae Scandinavica, Section B - Plant Soil Science. 49:65-74. https://doi.org/10.1080/09064719950135560
  14. Kravchenko, I. 2002. Spatial variability of soybean quality data as a function of field topography: I. Spatial data analysis. Crop Sci. 42:804-815. https://doi.org/10.2135/cropsci2002.0804
  15. Kroeze, C., A. Moiser, and L. Bouwman. 1999. Closing the global $N_{2}O$ budget: a retrospective analysis 1500-1994. Global Biogeochem. Cyc. 13:1-8. https://doi.org/10.1029/1998GB900020
  16. Mansson, K.F, U. Falkengren-Grerup. 2003. The effect of nitrogen deposition on nitrification, carbon and nitrogen mineralisation and litter C:N ratios in oak (Quercus robur L.) forests. Forest ecology and management 179:455-467. https://doi.org/10.1016/S0378-1127(02)00535-2
  17. Minami, K. 1997. Mitigation of nitrous oxide emissions from fertilized soils. In: Proceedings if IGAC Symposium, Nagoya, Japan.
  18. Mosier, A.R., W.J. Parton, and S. Phongpan. 1998. Longterm large N and immediate small N additions effects on trace gas fluxes in the Colorado shortgrass steppe. Biol. Fertil. Soils. 28:44-50. https://doi.org/10.1007/s003740050461
  19. RDA. 1999. Fertilizer recommendation for crops. Rural development administration, Suwon, Korea.
  20. Stevens, R.J., R.J. Laughlin, L.C. Burns, J.R.M. Arah, and R.C. Hood. 1997. Measuring the contributions of nitrification and denitrification to the flux of nitrous oxide from soil. Soil. Biol. Biochem 29:139-151. https://doi.org/10.1016/S0038-0717(96)00303-3
  21. Tesarova, M. und J. Gloser. 1997. Total $CO_{2}$ output from alluvial soils with two types of grassland communities. Pedobiologica. 16:364-372.
  22. Xu, X., H. Ouyang, G. Cao, Z. Pei, and C. Zhou. 2004. Nitrogen Deposition and carbon sequestration in alpine meadows. Biogeochemistry. 71:353-369. https://doi.org/10.1007/s10533-004-0371-z
  23. Yuping, YAN, S. Liqing, C. Min, Z. Zheng, T. Jianwei, W. Yinghong, Z. Yiping, W. Rui, L. Guangren, W. Yuesi, and S. Yang. 2008. Fluxes of $CH_{4}$ and $N_{2}O$ from soil under a tropical seasonal rain forest in Xishuangbanna, Southwest China. Journal of Environmental Sciences 20:207-215. https://doi.org/10.1016/S1001-0742(08)60033-9