Effective Annealing and Crystallization of Si Film for Advanced TFT System

  • Noguchi, Takashi (Faculty of Engineering, University of the Ryukyus 1 Senbaru)
  • Received : 2009.11.29
  • Accepted : 2010.03.22
  • Published : 2010.03.31

Abstract

The effect of the crystallization and activated annealing of Si films using an excimer laser and the new CW blue laser are described and compared with furnace annealing for application in advanced TFTs and for future applications. Pulsed excimer laser annealing (ELA) is currently being used extensively as a low-temperature poly-silicon (LTPS) process on glass substrates as its efficiency is high in the ultra-violet (UV) region for thin Si films with thickness of 40-60 nm. ELA enables extremely low resistivity relating to high crystallinity for both the n- and p-type Si films. On the other hand, CW blue laser diode annealing (BLDA) enables the smooth Si surface to have arbitral crystal grains from micro-grains to an anisotropic huge grain structure only by controlling its power density. Both annealing techniques are expected to be applied in the future advanced TFT systems.

Keywords

References

  1. R.B. Iverson and R. Reif, J. Appl. Phys., 62, 1675 (1987). https://doi.org/10.1063/1.339591
  2. T. Noguchi. T. Ohshima, H. Hayashi, J. Ele. Chem..Soc., Solid-State Science and Technology, 134, 1771 (1987).
  3. K. Kanzaki, Dig. of Tech. Papers on AM-LCD 01, 71 (2001).
  4. T. Noguchi, A.J. Tang, J.A. Tsai and R. Reif, IEEE Trans. Ele. Dev., 43, 1454 (1996). https://doi.org/10.1109/16.535332
  5. T. Noguchi, H. Tsukamoto, T. Suzuki, and H. Masuya, Ext. Abst. Int. Conf. SSDM, 620 (1991).
  6. K. Tatsuki, T. Arai, N. Umezu, K. Shirai, Y. Inagaki and T. Urabe, Dig. of Tech. Papers, AM- FPD 08, S-11, 109 (2008).
  7. D.P. Gosain, T. Noguchi and S. Usui, Jap. J. Appl. Phys. 39, L179 (2000). https://doi.org/10.1143/JJAP.39.L179
  8. T. Noguchi, Y.Y. Kwon, J.S. Jung, J.M. Kim, K.B. Park, H. Lim, D.Y. Kim, H.S. Cho, H.X. Yin and W.X. Xianyu, Jap. J. Appl. Phys., 45, 432 (2006). https://doi.org/10.1143/JJAP.45.L432
  9. T. Noguchi, Y. Ogino and M. Terao, Proc. of ITC'09, 10.1, 252 (2009).
  10. T. Noguchi, Y. Ogino and M. Terao, Proc. of AM FPD, 5-3, 203 (2009).
  11. T. Noguchi, H. Hayashi and T. Ohshima, Jap. J. Appl. Phys. Lett., 25, L121 (1986). https://doi.org/10.1143/JJAP.25.L121
  12. T. Noguchi, K. Tajima, and Y. Morita, Mat. Res. Soc. Symp. Proc., 146, 35 (1989).
  13. D.Y. Kim, H.S. Cho, K.B. Park, D.Y. Kim, J.S. Jung and T. Noguchi, J. Korean Phys. Soc., 45, S847 (2004).
  14. R.S. Sposil and J.S. Im, Appl. Phys. Lett., 69, 2864 (1996). https://doi.org/10.1063/1.117344
  15. N. Matsuo and H. Hamada, IEICE Tech. Report, SDM 200-13 (2000).
  16. K.B. Park, H.S. Cho, H.X. Yin, J.S. Jung, D.Y. Kim, W.X. Xianyu, J.Y. Kwon, Y.S. Park and T. Noguchi, Proc. of IDW, 315 (2004).
  17. D. Debarre, G. Kerrien, T. Noguchi, J. Boulmer, IEICE Trans. Electron., E85-C, 1098 (2002).
  18. H. Lim, H.X. Yin, W.X. Xianyu, J.Y. Kwon, X.X. Zhang, H.S. Cho, J.M. Kim, K.B. Park, D.Y. Kim, J.S. Jung and T. Noguchi, J. of Korean.Phys. Soc.., 48, S.47 (2006).
  19. T. Noguchi, Jap. J. Appl. Phys., 47, 1858 (2008). https://doi.org/10.1143/JJAP.47.1858
  20. T. Noguchi, K. Kawai, T. Miyahira, T. Suzuki and M. Sato, J. of Korean Phys. Soc., 54, 463 (2009). https://doi.org/10.3938/jkps.54.463
  21. T. Kamins, "Polycrystalline Silicon for Integrated Circuit Applications" (Kluwer Academic Publishers, 1988), p.112.
  22. T. Kaitoh, T. Miyazawa, H. Miyake, T. Noda, T. Sakai, Y. Owaku, and T. Saitoh, , Proc. of IDW07, TFTs, AMD-7, 481 (2007).
  23. J.Y. Kwon, J.S. Jung, K.B. Park, J.H. Hur, J.M. Kim, H. Lim, S.Y. Lee, J.M. Kim, T. Noguchi, J.H. Hur and J. Jang, Proc. SID'07, 34.2 (2007).