DOI QR코드

DOI QR Code

Cultivation of Spirulina platensis Using Pig Wastewater in a Semi-Continuous Process

  • Received : 2009.07.17
  • Accepted : 2009.11.04
  • Published : 2010.03.31

Abstract

The effluent from anaerobic digestion contains organic nitrogen and phosphorus, which are both required for growth of Spirulina platensis. Effluent (20%) from the upflow anaerobic sludge blanket (UASB) from a pig farm, supplemented with 4.5 g/l sodium bicarbonate ($NaHCO_3$) and 0.2 g/l urea fertilizer (46:0:0, N:P:K), was found to be not only a suitable medium for the growth of Spirulina platensis but also a low-cost alternative. Cost calculation showed that this medium is 4.4 times cheaper than modifized Zarrouk's medium. The average productivities of a semi-continuous culture grown under outdoor conditions in a 6-1 scale and a 100-1 pilot scale were 19.9 $g/m^2/d$ and 12 $g/m^2/d$, respectively. In addition, the biomass of organisms grown in UASB effluent contained approximately 57.9% protein, 1.12% $\gamma$-linolenic acid, and 19.5% phycocyanin. The average rates of bicarbonate, total nitrogen, and phosphorus removal were 380 mg/l/d, 34 mg/l/d, and 4 mg/l/d, respectively.

Keywords

References

  1. Abeliovich, A. and Y. Azov. 1976. Toxicity of ammonia to algae in sewage oxidation pond. Appl. Environ. Microbiol. 31: 801-806.
  2. Al-Batshan, H. A., S. I. Al-Myfarrej, A. A. Al-Homaidan, and M. A. Qureshi. 2001. Enhancement of chicken macrophage phagocytic function and nitrite production by dietary Spirulina platensis. Immunopharmacol. Immunotoxicol. 23: 281-289. https://doi.org/10.1081/IPH-100103866
  3. APHA. 1998. Standard Methods for the Examination of Water and Wastewater, 20th Ed. American Public Health Association, Washington, DC.
  4. Aslan, S. and I. K. Kapdan. 2006. Batch kinetics of nitrogen and phosphorus removal from synthetic wastewater by algae. Ecol. Eng. 28: 64-70. https://doi.org/10.1016/j.ecoleng.2006.04.003
  5. Becker, E. W. 1994. Microalgae Biotechnology and Microbiology. Cambrige University Press, Cambrige
  6. Belay, A., K. Toshimitsu, and Y. Ota. 1996. Spirulina (Arthrospira): Potential application as an animal feed supplement. J. Appl. Phycol. 8: 303-311. https://doi.org/10.1007/BF02178573
  7. Boussiba, S. and A. Richmond. 1979. Isolation and purification of phycocyanins from the blue-green alga Spirulina platensis. Arch. Microbiol. 120: 155-159. https://doi.org/10.1007/BF00409102
  8. Canizares-Villanueva, R. O., A. R. Dominguez, M. S. Cruz, and E. Rios-Leal. 1995. Chemical composition of cyanobacteria grown in diluted, aerated swine wastewater. Bioresour. Technol. 51: 111-116. https://doi.org/10.1016/0960-8524(94)00099-M
  9. Chien, Y. H. and W. C. Shiau. 2005. The effects of dietary supplementation of algae and synthetic astaxanthin on body astaxanthin, survival, growth, and low dissolved oxygen stress resistance of kuruma prawn, Marsupenaeus japonicus Bate. J. Exp. Mar. Biol. Ecol. 318: 201-211 https://doi.org/10.1016/j.jembe.2004.12.016
  10. Cornet, J. F., C. G. Dussap, and J. B. Gros. 1998. Kinetics and energetic of photosynthetic micro-organism in photobioreactors. Adv. Biochem. Eng. Biotechnol. 59: 155-224.
  11. Costa, J. A. V., K. L. Cozza, L. Oliveira, and G. Magagnin. 2001. Different nitrogen sources and growth responses of Spirulina platensis in microenvironments. World J. Microbiol. Biotechnol. 17: 439-442.
  12. Fedler, C. B., M. A. Pulluoglu, and N. C. Parker. 1993. Integrating livestock waste recycling with production of microalgae. In: Techniques for Modern Aquaculture. American Society of Agricultural Engineers, Publication 02-93.
  13. Lapage, G. and C. C. Roy. 1984. Improved recovery of fatty acid through direct transesterification without prior extraction or purification. J. Lipid Res. 25: 1391-1396.
  14. Lowry, O. H., N. J. Rosenbrough, A. L. Farr, and R. J. Randall. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193: 265-275.
  15. Matsudo, C. M., P. R. Bezerra, S. Sato, and P. Perego. 2009. Repeated fed-batch cultivation of Arthrospira (Spirulina) platensis using as nitrogen source. Biochem. Eng. J. 43: 52-57. https://doi.org/10.1016/j.bej.2008.08.009
  16. Olguin, E. J., S. Galicia, G. Mercado, and T. Perez. 2003. Annual productivity of Spirulina (Arthrospira) and nutrient removal in a pig wastewater recycling process under tropical conditions. J. Appl. Phycol. 15: 249-257.
  17. Olguin, E. J., S. Galicia, O. Angulo-Guerrero, and E. Hernandez. 2001. The effect of low light flux and nitrogen deficiency on the chemical composition of Spirulina sp. (Arthrospira) grown on digested pig waste. Bioresour. Technol. 77: 19-24. https://doi.org/10.1016/S0960-8524(00)00142-5
  18. Phang, S. M., M. S. Miah, B. G. Yeoh, and M. A. Hashim. 2000. Spirulina cultivation in digested sago starch factory wastewater. J. Appl. Phycol. 12: 395-400. https://doi.org/10.1023/A:1008157731731
  19. Pouliot, Y., P. Talbot, and J. De la Noue. 1986. Biotreatment du purin de porc par production de biomass de Spirulina. Entropie 130/131: 73.
  20. Proulx, D., P. Lessard, and J. De la Noue. 1994. Tertiary treatment of secondarily treated urban wastewater by intensive culture of Phormidium bohneri. Environ. Technol. 15: 449-458. https://doi.org/10.1080/09593339409385449
  21. Qureshi, M. A., J. D. Garlich, and M. T. Kidd. 1996. Dietary Spirulina platensis enhances humoral and cell-mediated immune functions in chickens. Immunopharmacol. Immunotoxicol. 18: 465-476. https://doi.org/10.3109/08923979609052748
  22. Raoof, B., B. D. Kaushik, and R. Prasanna. 2006. Formulation of a low-cost medium for mass production of Spirulina. Biomass Bioenergy 30: 537-542. https://doi.org/10.1016/j.biombioe.2005.09.006
  23. Sanchez, M., J. B. Castillo, C. Rozo, and I. Rodriguez. 2003. Spirulina (Arthrospira): An edible microorganism. A review. In: Universitas Scientiarum. 8(1). Avaiable from: http://www.javeriana.edu.co/universitas_scientiarum/vol8n1/J_bernal.htm
  24. Sassano, C. E. N., L. A. Gioielli, K. A. Almeida, S. Sato, P. Perego, A. Converti, and J. C. M. Carvalho. 2007. Cultivation of Spirulina platensis by continuous process using ammonium chloride as nitrogen source. Biomass Bioenergy 31: 593-598. https://doi.org/10.1016/j.biombioe.2007.04.001
  25. Sweeten, J. M. 1992. Livestock and poultry waste management: A national overview. In J. Blake, J. Donald, and W. Magette (eds.). National Livestock, Poultry and Aquaculture Waste Management. Proceedings of the National Workshop 29-31 July 1991, ASAE Publication 03-92.
  26. Tanticharoen, M., B. Bunnag, and A. Vonshak. 1993. Cultivation of Spirulina using secondary treated starch wastewater. Austr. Biotechnol. 3: 223-226.
  27. Volkmann, H., U. Imianovsky, L. B. J. Oliveira, and S. E. Sant'Anna. 2008. Cultivation of Arthrospira (Spirulina) platensis in desalinator wastewater and salinated synthetic medium: Protein content and amino acid profile. Braz. J. Microbiol. 39: 98-101. https://doi.org/10.1590/S1517-83822008000100022
  28. Vonshak, A. 1997. Spirulina platensis (Arthrospira) Physiology, Cell Biology and Biotechnology. Taylor and Francis, London.

Cited by

  1. Spirulina Prevents Memory Dysfunction, Reduces Oxidative Stress Damage and Augments Antioxidant Activity in Senescence-Accelerated Mice vol.57, pp.2, 2010, https://doi.org/10.3177/jnsv.57.186
  2. Cultivation of filamentous cyanobacteria (blue-green algae) in agro-industrial wastes and wastewaters: A review vol.88, pp.10, 2010, https://doi.org/10.1016/j.apenergy.2010.12.042
  3. Butanol Production from Cane Molasses by Clostridium saccharobutylicum DSM 13864: Batch and Semicontinuous Fermentation vol.166, pp.8, 2010, https://doi.org/10.1007/s12010-012-9614-y
  4. Arthrospira platensis biomass with high protein content cultivated in continuous process using urea as nitrogen source vol.112, pp.6, 2010, https://doi.org/10.1111/j.1365-2672.2012.05303.x
  5. An Optical-Density-Based Feedback Feeding Method for Ammonium Concentration Control in Spirulina platensis Cultivation vol.22, pp.7, 2012, https://doi.org/10.4014/jmb.1112.12061
  6. Spirulina as a livestock supplement and animal feed vol.97, pp.4, 2013, https://doi.org/10.1111/j.1439-0396.2012.01328.x
  7. Evaluation of Spirulina platensis Resistance to Different Antibiotics to Find a Selectable Marker for Genetic Transformation vol.6, pp.7, 2013, https://doi.org/10.5812/jjm.5456
  8. Using agar-alginate immobilized cyanobacteria (Dermocarpella sp.) arranged in tubular chains to treat swine farm waste water vol.25, pp.6, 2013, https://doi.org/10.1007/s10811-013-0033-4
  9. Production of aquatic feed grade algal powder from turtle breeding wastewater using a locally isolated Spirulina sp. JXSC-S1 vol.9, pp.51, 2010, https://doi.org/10.5897/ajmr2015.7602
  10. Beyond land application: Emerging technologies for the treatment and reuse of anaerobically digested agricultural and food waste vol.44, pp.None, 2010, https://doi.org/10.1016/j.wasman.2015.07.037
  11. Microalgal phycocyanin productivity: strategies for phyco‐valorization vol.90, pp.11, 2010, https://doi.org/10.1002/jctb.4796
  12. Cultivation of an Arthrospira platensis with digested piggery wastewater vol.72, pp.10, 2010, https://doi.org/10.2166/wst.2015.353
  13. Cultivation of Arthrospira ( Spirulina ) platensis using confectionary wastes for aquaculture feeding vol.13, pp.2, 2015, https://doi.org/10.1016/j.jgeb.2015.08.003
  14. Efecto de carbón tipo lignito sobre el crecimiento y producción de pigmentos de Arthrospira platensis vol.18, pp.1, 2010, https://doi.org/10.15446/rev.colomb.biote.v18n1.49994
  15. Palm oil mill effluent treatment and CO2 sequestration by using microalgae-sustainable strategies for environmental protection vol.24, pp.25, 2010, https://doi.org/10.1007/s11356-017-9742-6
  16. Efecto de ácidos húmicos sobre el crecimiento y la composición bioquímica de Arthrospira platensis (Cianobacteria) vol.19, pp.1, 2010, https://doi.org/10.15446/rev.colomb.biote.v19n1.58316
  17. Cyanobacterial PHA Production—Review of Recent Advances and a Summary of Three Years’ Working Experience Running a Pilot Plant vol.4, pp.2, 2010, https://doi.org/10.3390/bioengineering4020026
  18. Integration of Waste Valorization for Sustainable Production of Chemicals and Materials via Algal Cultivation vol.375, pp.6, 2010, https://doi.org/10.1007/s41061-017-0175-y
  19. Biomass composition of Arthrospira platensis during cultivation on industrial process water and harvesting vol.30, pp.2, 2010, https://doi.org/10.1007/s10811-017-1332-y
  20. Bioprocess Engineering Aspects of Sustainable Polyhydroxyalkanoate Production in Cyanobacteria vol.5, pp.4, 2018, https://doi.org/10.3390/bioengineering5040111
  21. Tertiary treatment of domestic wastewater by Spirulina platensis integrated with microalgal biorefinery vol.10, pp.1, 2010, https://doi.org/10.1080/17597269.2018.1461509
  22. Enhancement of C-phycocyanin productivity by Arthrospira platensis when growing on palm oil mill effluent in a two-stage semi-continuous cultivation mode vol.31, pp.5, 2010, https://doi.org/10.1007/s10811-019-01806-9
  23. Stoichiometrically balanced nutrient management using a newly designed nutrient medium for large scale cultivation of Cyanobacterium aponinum vol.31, pp.5, 2010, https://doi.org/10.1007/s10811-019-01851-4
  24. Stimulating methane production from microalgae by alkaline pretreatment and co-digestion with sludge vol.41, pp.12, 2010, https://doi.org/10.1080/09593330.2018.1540665
  25. Preliminary Design of Phycocyanin Production from Spirulina platensis Using Anaerobically Digested Dairy Manure Wastewater vol.520, pp.None, 2010, https://doi.org/10.1088/1755-1315/520/1/012007
  26. Cyanobacterial Polyhydroxyalkanoates: A Sustainable Alternative in Circular Economy vol.25, pp.18, 2010, https://doi.org/10.3390/molecules25184331
  27. Cyanobacterial Biomass Produced in the Wastewater of the Dairy Industry and Its Evaluation in Anaerobic Co-Digestion with Cattle Manure for Enhanced Methane Production vol.8, pp.10, 2010, https://doi.org/10.3390/pr8101290
  28. Nutrient removal from the centrate of anaerobic digestion of high ammonium industrial wastewater by a semi-continuous culture of Arthrospira sp. and Nostoc sp. PCC 7413 vol.32, pp.5, 2010, https://doi.org/10.1007/s10811-020-02175-4
  29. A review on Spirulina: alternative media for cultivation and nutritive value as an aquafeed vol.12, pp.4, 2010, https://doi.org/10.1111/raq.12439