DOI QR코드

DOI QR Code

The Synergistic Antibacterial Activity of 1-Acetyl-$\beta$-Carboline and $\beta$-Lactams Against Methicillin-Resistant Staphylococcus aureus (MRSA)

  • Shin, Hee-Jae (Marine Natural Products Laboratory, Korea Ocean Research and Development Institute) ;
  • Lee, Hyi-Seung (Marine Natural Products Laboratory, Korea Ocean Research and Development Institute) ;
  • Lee, Dae-Sung (Department of Microbiology, Pukyong National University)
  • Received : 2009.10.16
  • Accepted : 2009.10.26
  • Published : 2010.03.31

Abstract

1-Acetyl-$\beta$-carboline was isolated as an anti-MRSA agent from the fermentation broth of a marine actinomycete isolated from marine sediment. The producing strain was identified to be Streptomyces sp. by phylogenetic analysis of the 16S rRNA gene sequence. The anti-MRSA agent was isolated by bioactivity-guided fractionation of the culture extract by solvent partitioning, ODS open flash chromatography, and purification with a reversed-phase HPLC. Its structure was elucidated by extensive 2D NMR and mass spectral analyses. Combination of 1-acetyl-$\beta$-carboline with ampicillin exhibited synergistic antibacterial activity against MRSA.

Keywords

References

  1. Allen, J. R. F. and B. R. Holmstedt. 1980. The simple $\beta$-carboline alkaloids. Phytochemistry 19: 1573-1582. https://doi.org/10.1016/S0031-9422(00)83773-5
  2. Atlas, R. M. 1993. In L. C. Parks (ed.). Handbook of Microbiological Media, pp. 192-193. CRC Press, Raton, FL.
  3. Isnansetyo, A. and Y. Kamei. 2009. Anti-methicillin-resistant Staphylococcus aureus (MRSA) activity of MC21-B, an antibacterial compound produced by the marine bacterium Pseudoalteromonas phenolica $O-B30^{T}$. Int. J. Antimicrob. Agents 34: 131-135. https://doi.org/10.1016/j.ijantimicag.2009.02.009
  4. Lee, D. S., M. S. Kang, H. J. Hwang, S. H. Eom, J. Y. Yang, M. S. Lee, et al. 2008. Synergistic effect between dieckol from Ecklonia stolonifera and $\beta$-lactams against methicillin-resistant Staphylococcus aureus. Biotechnol. Bioprocess Eng. 13: 765. https://doi.org/10.1007/s12257-008-0184-3
  5. Mansoor, T. A., C. Ramalhete, J. Molnar, S. Mulhovo, and M. J. U. Ferreira. 2009. Tabernines A-C, $\beta$-carbolines from the leaves of Tabernaemontana elegans. 72: 1147-1150. https://doi.org/10.1021/np9001477
  6. Maruyama, T., Y. Yamamoto, Y. Kano, M. Kurazono, E. Shitara, K. Iwamatsu, and K. Atsumi. 2008. Synthesis of novel di- and tricationic carbapenems with potent anti-MRSA activity. Bioorg. Med. Chem. Lett. 19: 447-450.
  7. National Committee for Clinical Laboratory Standards. 2009. Method for dilution antimicrobial susceptibility testing for bacteria that grow aerobically; Approved Standard M07-A8, 8th Ed. National Committee for Clinical Laboratory Standards, Wayne, PA, U.S.A.
  8. Norden, C. W., H. Wentzel, and E. Keleti. 1979. Comparison of techniques of measurement of in vitro antibiotic synergism. J. Infect. Dis. 140: 629-633. https://doi.org/10.1093/infdis/140.4.629
  9. Shin, H. J., H. S. Jeong, H.-S. Lee, S.-K. Park, H. M. Kim, and H. J. Kwon. 2007. Isolation and structure determination of streptochlorin, an antiproliferative agent from a marine-derived Streptomyces sp. 04DH52. J. Microbiol. Biotechnol. 17: 1403-1406.
  10. Shiota, S., M. Shimizu, J. Sugiyama, Y. Morita, T. Mizushima, and T. Tsuchiya. 2004. Mechanisms of action of corilagin and tellimagrandin I that remarkably potentiate the activity of $\beta$-lactams against methicillin-resistant Staphylococcus aureus. Microbiol. Immunol. 48: 67-73.
  11. Shirling, E. B. and D. Gottlieb. 1966. Methods for characterization of Streptomyces species. Int. J. Syst. Bacteriol. 16: 313-340. https://doi.org/10.1099/00207713-16-3-313
  12. Trujillo, J. I., M. J. Meyers, D. R. Anderson, S. Hegde, M. W. Mahoney, W. F. Vernier, et al. 2007. Novel tetrahydro-$\beta$-carboline-1-carboxylic acids as inhibitors of mitogen activated protein kinase-activated protein kinase 2 (MK-2). Bioorg. Med. Chem. Lett. 17: 4657-4663. https://doi.org/10.1016/j.bmcl.2007.05.070
  13. Vaudaux, P., P. Francois, B. Berger-Bachi, and D. P. Lew. 2001. In vivo emergence of subpopulations expressing teicoplanin or vancomycin resistance phenotypes in a glycopeptides-susceptible, methicillin-resistant strain of Staphylococcus aureus. J. Antimicrob. Chemother. 47: 163-170. https://doi.org/10.1093/jac/47.2.163
  14. Woodford, N. 2005. Biological counterstrike: Antibiotic resistance mechanisms of Gram-positive cocci. Clin. Microbiol. Infect. 11: 2-21.
  15. Zhang, H. and R. C. Larock. 2001. Synthesis of beta- and gamma-carbolines by the palladium-catalyzed iminoannulation of internal alkynes. Org. Lett. 3: 3083-3086. https://doi.org/10.1021/ol010124w
  16. Zhao, W. H., Z. Q. Hu, S. Okubo, Y. Hara, and T. Shimamura. 2001. Mechanism of synergy between epigallocatechin gallate and $\beta$-lactams against methicillin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 45: 1737-1742. https://doi.org/10.1128/AAC.45.6.1737-1742.2001

Cited by

  1. Discovery of McbB, an Enzyme Catalyzing the β‐Carboline Skeleton Construction in the Marinacarboline Biosynthetic Pathway vol.125, pp.38, 2013, https://doi.org/10.1002/ange.201303449
  2. Marine bacteria: potential sources for compounds to overcome antibiotic resistance vol.97, pp.11, 2010, https://doi.org/10.1007/s00253-013-4905-y
  3. Discovery of McbB, an Enzyme Catalyzing the β‐Carboline Skeleton Construction in the Marinacarboline Biosynthetic Pathway vol.52, pp.38, 2010, https://doi.org/10.1002/anie.201303449
  4. PhI(OAc)2-mediated one-pot oxidative decarboxylation and aromatization of tetrahydro-β-carbolines: synthesis of norharmane, harmane, eudistomin U and eudistomin I. vol.13, pp.32, 2010, https://doi.org/10.1039/c5ob00871a
  5. Simple and efficient method for aromatization of tetrahydro-β-carbolines by using K2S2O8 as a catalyst and its antimicrobial activity comparison with molecular docking studies vol.87, pp.11, 2010, https://doi.org/10.1134/s1070363217110287
  6. Antibacterial Activity of Endophytic Actinomycetes Isolated from the Medicinal Plant Vochysia divergens (Pantanal, Brazil) vol.8, pp.None, 2017, https://doi.org/10.3389/fmicb.2017.01642
  7. Microbial diversity of saline environments: searching for cytotoxic activities vol.7, pp.1, 2010, https://doi.org/10.1186/s13568-017-0527-6
  8. Design and Synthesis of DNA-Interactive β-Carboline-Oxindole Hybrids as Cytotoxic and Apoptosis-Inducing Agents vol.13, pp.18, 2010, https://doi.org/10.1002/cmdc.201800402
  9. Synthesis and in vitro cytotoxicity evaluation of β-carboline-linked 2,4-thiazolidinedione hybrids: potential DNA intercalation and apoptosis-inducing studies vol.42, pp.19, 2018, https://doi.org/10.1039/c8nj03248c
  10. Streptomyces as a Prominent Resource of Future Anti-MRSA Drugs vol.9, pp.None, 2010, https://doi.org/10.3389/fmicb.2018.02221
  11. Soil Bacteria Isolated From Tunisian Arid Areas Show Promising Antimicrobial Activities Against Gram-Negatives vol.9, pp.None, 2010, https://doi.org/10.3389/fmicb.2018.02742
  12. Recent Update on the Anti-infective Potential of β-carboline Analogs vol.20, pp.None, 2010, https://doi.org/10.2174/1389557520666201001130114
  13. Secondary metabolites from hypocrealean entomopathogenic fungi: novel bioactive compounds vol.37, pp.9, 2010, https://doi.org/10.1039/c9np00065h
  14. Interaction of mutant PBP2a and bioactive compounds from Streptomyces with anti-MRSA activities vol.959, pp.None, 2010, https://doi.org/10.1088/1757-899x/959/1/012031
  15. Pseudonocardia cytotoxica sp. nov., a novel actinomycete isolated from an Arctic fjord with potential to produce cytotoxic compound vol.114, pp.1, 2021, https://doi.org/10.1007/s10482-020-01490-7
  16. Bioassay-Guided Interpretation of Antimicrobial Compounds in Kumu, a TCM Preparation From Picrasma quassioides’ Stem via UHPLC-Orbitrap-Ion Trap Mass Spectrometry Combined With Fragmentation and vol.12, pp.None, 2021, https://doi.org/10.3389/fphar.2021.761751