DOI QR코드

DOI QR Code

Identification, Fermentation, and Bioactivity Against Xanthomonas oryzae of Antimicrobial Metabolites Isolated from Phomopsis longicolla S1B4

  • Lim, Chae-Sung (Division of Bioscience and Biotechnology, Bio/Molecular Informatics Center Konkuk University) ;
  • Kim, Ji-Young (Division of Bioscience and Biotechnology, Bio/Molecular Informatics Center Konkuk University) ;
  • Choi, Jung-Nam (Division of Bioscience and Biotechnology, Bio/Molecular Informatics Center Konkuk University) ;
  • Ponnusamy, Kannan (Division of Bioscience and Biotechnology, Bio/Molecular Informatics Center Konkuk University) ;
  • Jeon, Yul-Taek (Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University) ;
  • Kim, Soo-Un (Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University) ;
  • Kim, Jeong-Gu (Genomics Division, National Academy of Agricultural Science (NAAS), Rural Development Administration (RDA)) ;
  • Lee, Choong-Hwan (Division of Bioscience and Biotechnology, Bio/Molecular Informatics Center Konkuk University)
  • Received : 2009.09.17
  • Accepted : 2009.10.06
  • Published : 2010.03.31

Abstract

Bacterial blight, an important and potentially destructive bacterial disease in rice, is caused by Xanthomonas oryzae. Recently, this organism has developed resistance to available antibiotics, prompting scientists to find a suitable alternative. This study focused on secondary metabolites of Phomopsis longicolla to target X. oryzae. Five bioactive compounds were isolated by activity-guided fractionation from ethyl acetate extracts of mycelia and were identified by LC/MS and NMR spectroscopy as dicerandrol A, dicerandrol B, dicerandrol C, deacetylphomoxanthone B, and fusaristatin A. This is the first time fusaristatin A has been isolated from Phomopsis sp. Deacetylphomoxanthone B showed a higher antibacterial effect against X. oryzae KACC 10331 than the positive control (2,4-diacetyphloroglucinol). Dicerandrol A also showed high antimicrobial activity against Gram-positive bacteria (Staphylococcus aureus, Bacillus subtilis) and yeast (Candida albicans). In addition, high production yields of these compounds were obtained at the stationary and death phases.

Keywords

References

  1. Akihiro, K., K. Fumihisa, M. Godliving, and N. Yoshitoshi. 2006. Development of optimal culture method of Sparassis crispa mycelia and a new extraction method of antineoplastic constituent. Biochem. Eng. J. 30: 109-113. https://doi.org/10.1016/j.bej.2006.02.004
  2. Casas Lopez, J. L., J. A. Sanchez Perez, J. M. Fernandez Sevilla, F. G. Acien Fernandez, E. Molina Grima, and Y. Chisti. 2003. Production of lovastatin by Aspergillus terreus: Effects of the C:N ratio and the principal nutrients on growth and metabolite production. Enzyme Microb. Tech. 33: 270-277. https://doi.org/10.1016/S0141-0229(03)00130-3
  3. Cui, C. B., M. Ubukata, H. Kakeya, R. Onose, G. Okada, I. Takahashi, K. Isono, and H. Osada. 1996. Acetophthalidin, a novel inhibitor of mammalian cell cycle, produced by a fungus isolated from a sea sediment. J. Antibiot. (Tokyo) 49: 216-219. https://doi.org/10.7164/antibiotics.49.216
  4. Dung, N. T., J. M. Kim, and S. C. Kang. 2008. Chemical composition, antimicrobial and antioxidant activities of the essential oil and the ethanol extract of Cleistocalyx operculatus (Roxb.) Merr and Perry buds. Food Chem. Toxicol. 46: 3632-3639. https://doi.org/10.1016/j.fct.2008.09.013
  5. Espinel-Ingroff, A., B. Arthington-Skaggs, N. Iqbal, D. Ellis, M. A. Pfaller, S. Messer, et al. 2007. Multicenter evaluation of a new disk agar diffusion method for susceptibility testing of filamentous fungi with voriconazole, posaconazole, itraconazole, amphotericin B, and caspofungin. J. Clin. Microbiol. 45: 1811-1820. https://doi.org/10.1128/JCM.00134-07
  6. Goker, H., S. Ozden, S. Yildiz, and D. W. Boykin. 2005. Synthesis and potent antibacterial activity against MRSA of some novel 1,2-disubstituted-1H-benzimidazole-N-alkylated-5-carboxamidines. Eur. J. Med. Chem. 40: 1062-1069. https://doi.org/10.1016/j.ejmech.2005.05.002
  7. Gyorgy, S., M. Gyorgy, and P. T. Robert. 1998. Production of lovastatin by a wild strain of Aspergillus terreus. Biotechnol. Lett. 20: 411-415. https://doi.org/10.1023/A:1005391716830
  8. Lee, C. H., H. J. Kempt, Y. Lim, and Y. H. Cho. 2000. Biocontrol activity of Pseudomonas cepacia AF2001 and anthelmintic activity of its novel metabolite, Cepacidine A. J. Microbiol. Biotechnol. 10: 568-571.
  9. Lee, S. B., K. H. Cha, S. N. Kim, S. Altantsetseg, S. Shatar, O. Sarangerel, and C. W. Nho. 2007. The antimicrobial activity of essential oil from Dracocephalum foetidum against pathogenic microorganisms. J. Microbiol. 45: 53-57.
  10. Mikani, A., H. R. Etebarian, P. L. Sholberg, D. T. O'Gorman, S. Stokes, and A. Alizadeh. 2008. Biological control of apple gray mold caused by Botrytis mali with Pseudomonas fluorescens strains. Postharvest Biol. Tech. 48: 107-112. https://doi.org/10.1016/j.postharvbio.2007.09.020
  11. Rukachaisirikul, V., U. Sommart, S. Phongpaichit, J. Sakayaroj, and K. Kirtikara. 2008. Metabolites from the endophytic fungus Phomopsis sp. PSU-D15. Phytochemistry 69: 783-787. https://doi.org/10.1016/j.phytochem.2007.09.006
  12. Shiono, Y., M. Tsuchinari, K. Shimanuki, T. Miyajima, T. Murayama, T. Koseki, et al. 2007. Fusaristatins A and B, two new cyclic lipopeptides from an endophytic Fusarium sp. J. Antibiot. (Tokyo) 60: 309-316. https://doi.org/10.1038/ja.2007.39
  13. Tsuge, S., H. Ochiai, Y. Inoue, T. Oku, K. Tsuno, H. Kaku, and Y. Kubo. 2004. Involvement of phosphoglucose isomerase in pathogenicity of Xanthomonas oryzae pv. oryzae. Phytopathology 94: 478-483. https://doi.org/10.1094/PHYTO.2004.94.5.478
  14. Tsumagari, N., R. Nakai, H. Onodera, A. Hasegawa, E. S. Rahayu, K. Ando, and Y. Yamashita. 2004. MPC1001, a new antitumor antibiotic produced by Cladorrhinum sp. J. Antibiot. (Tokyo) 57: 532-534. https://doi.org/10.7164/antibiotics.57.532
  15. Velusamy, P., J. E. Immanuel, S. S. Gnanamanickam, and L. Thomashow. 2006. Biological control of rice bacterial blight by plant-associated bacteria producing 2,4-diacetylphloroglucinol. Can. J. Microbiol. 52: 56-65. https://doi.org/10.1139/w05-106
  16. Wagenaar, M. M. and J. Clardy. 2001. Dicerandrols, new antibiotic and cytotoxic dimers produced by the fungus Phomopsis longicolla isolated from an endangered mint. J. Nat. Prod. 64: 1006-1009. https://doi.org/10.1021/np010020u
  17. Zhu, Z. J., O. Krasnykh, D. Pan, V. Petukhova, G. Yu, Y. Liu, et al. 2008. Structure-activity relationships of macrolides against Mycobacterium tuberculosis. Tuberculosis (Edinb.) 88: 49-63. https://doi.org/10.1016/S1472-9792(08)70036-2

Cited by

  1. Screening and Identification of Antimicrobial Compounds from Streptomyces bottropensis Suppressing Rice Bacterial Blight vol.21, pp.12, 2011, https://doi.org/10.4014/jmb.1106.06047
  2. 벼의 생엽절편을 이용한 병원균 억제물질의 대량 스크리닝 방법 개발 vol.40, pp.1, 2010, https://doi.org/10.4014/kjmb.1110.10005
  3. Identification of a new phomoxanthone antibiotic from Phomopsis longicolla and its antimicrobial correlation with other metabolites during fermentation vol.66, pp.4, 2010, https://doi.org/10.1038/ja.2012.105
  4. Metabolic Changes of Phomopsis longicolla Fermentation and Its Effect on Antimicrobial Activity Against Xanthomonas oryzae vol.23, pp.2, 2010, https://doi.org/10.4014/jmb.1210.10020
  5. New Dimeric Members of the Phomoxanthone Family: Phomolactonexanthones A, B and Deacetylphomoxanthone C Isolated from the Fungus Phomopsis sp. vol.11, pp.12, 2010, https://doi.org/10.3390/md11124961
  6. Genetic transformation of Fusarium avenaceum by Agrobacterium tumefaciens mediated transformation and the development of a USER-Brick vector construction system vol.15, pp.None, 2014, https://doi.org/10.1186/1471-2199-15-15
  7. Endophytic fungi: a reservoir of antibacterials vol.5, pp.None, 2014, https://doi.org/10.3389/fmicb.2014.00715
  8. Xanthone dimers: a compound family which is both common and privileged vol.32, pp.1, 2010, https://doi.org/10.1039/c4np00050a
  9. Factors Influencing Production of Fusaristatin A in Fusarium graminearum vol.5, pp.2, 2015, https://doi.org/10.3390/metabo5020184
  10. Influence of Culturing Conditions on Bioprospecting and the Antimicrobial Potential of Endophytic Fungi from Schinus terebinthifolius vol.72, pp.2, 2010, https://doi.org/10.1007/s00284-015-0929-0
  11. Suppressing activity of staurosporine from Streptomyces sp. MJM4426 against rice bacterial blight disease vol.120, pp.4, 2010, https://doi.org/10.1111/jam.13034
  12. The genus Diaporthe: a rich source of diverse and bioactive metabolites vol.16, pp.5, 2010, https://doi.org/10.1007/s11557-017-1288-y
  13. Bioactive Secondary Metabolites of the Genus Diaporthe and Anamorph Phomopsis from Terrestrial and Marine Habitats and Endophytes: 2010-2019 vol.9, pp.2, 2010, https://doi.org/10.3390/microorganisms9020217